
The reductionist approach to science will continue to 
play an important role in scientific inquiry and progress. 
However, there is increasing interest across disciplines 
in studying the multiple interacting components of a 
given system simultaneously. This stems from the real
ization that it is often the complex interactions among 
these components that determine the ultimate outcome. 
While complexity in immunology is readily acknowl
edged, in many cases the ability to measure the contribu
tion of each component is challenging. Even where this 
can be achieved, it can be difficult to interpret the results 
by looking at individual components independently. 
Mathematical and computational modelling can pro
vide valuable information on the relative importance 
of different immunological components, how they are 
influenced by other components and how these relation
ships may vary across conditions. Models can provide 
informed hypotheses for experimental testing, generate a 
comprehensive map of the integrated performance of the 
immune system and identify potential targets for clinical 
manipulation of the immune response.

In this Review, we provide an introduction and over
view of one category of models: those based on mecha
nistic simulations of an underlying system of interest. 
Our primary goal is to familiarize immunologists with, 
and increase interest in, these kinds of models, and to 
provide enough information for readers to understand 
the strengths, weaknesses and uses of such models. For 
those interested in pursuing modelling further, we also 
provide some pointers for getting started with developing  
and using simulation models.

Types of models
Models are everywhere in science. Models can be con
ceptual, including verbal models, graphs or charts; can 
be experimental, such as a specific cell culture system 
or mouse strain; or may take the form of quantitative 

mathematical or computer models. Here we exclusively 
focus on the latter type of models.

The most common types of quantitative models are 
what we term phenomenological models (we avoid the 
often applied term ‘statistical’ because the contrasting 
mechanistic models we focus on here can also be used 
in a statistical manner). Phenomenological models are 
applied to extract patterns or, more broadly, information 
from data. As such, whenever data are being analysed in 
some mathematical manner, this type of model is in play. 
Computing a correlation coefficient between two quan
tities of interest is an example of a very simple model that 
tries to detect a pattern. Regression models, in which 
a mathematical function is specified and the distance 
between the data and the function is minimized, also fall 
into this category1. In recent years, the increase of avail
able data has led to greater use of more complex phenom
enological models, which increasingly go by names  
such as machine learning or deep learning approaches2,3. 
These models do not explicitly describe the mechanisms 
by which patterns arise, and this is both a strength and 
a weakness. On the plus side, one can determine cor
relations, find patterns, deduce potential causation 
and make predictions without having to understand 
the underlying mechanisms governing a given system. 
The drawback is that such models provide, at best, hints 
regarding potential mechanisms. Especially for complex 
systems, one can often find correlations or patterns in 
the data without knowing whether these are indicative of 
mechanistic or causal connections (for some illuminat
ing and entertaining examples, such as the strong corre
lation between divorces in Maine and the consumption 
of margarine, see ref.4).

To study mechanisms and processes, mechanistic models  
are ideal. One prominent type of such models uses sim
plified in silico representations of the processes underly
ing a system of interest to perform computer simulations.  

Phenomenological models
Mathematical and statistical 
models used to extract 
patterns and information from 
data, without trying to specify 
detailed mechanisms that lead 
to the observed data.

Machine learning or deep 
learning
Data analysis approaches that 
generally use complex 
computational models to find 
patterns in the data, usually 
with the goal of making 
predictions.
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Other terms used for such models are systems models, 
dynamical models or simply mathematical models. In 
particular, the terms systems thinking and systems modelling 
have become popular in various fields during the past 
few decades5,6. These are not clearly defined terms, 
but in general, a systems perspective looks at multiple 
— often numerous — components that interact with 
each other in potentially complicated ways. Somewhat 
confusingly, the terms systems immunology and systems  
biology are also used to describe the analysis of complex 
data sets, such as high dimensional omics data using  
phenomenological models.

Mechanistic simulation models explicitly specify 
processes describing the mechanisms of interaction 
between system components. Usually, these models are 
highly simplified — but done well, still very powerful — 
abstractions of the system under study. Engineering and 
the hard sciences provide some of the best examples for 

this approach. For instance, equations describing electric 
circuits can be simulated to study and predict the behav
iour of an actual electronic component. The advantage 
of this kind of model is that they can provide mechanis
tic insights, leading to a better and deeper understanding 
of the system, to a point where the model might allow 
for very precise predictions. The main disadvantage of 
this approach is that model construction requires con
siderable knowledge (or at least assumptions) about the 
system and how its components interact.

Both phenomenological and mechanistic models 
are useful tools with distinct advantages and disadvan
tages. Deciding which type of model to use depends on 
the question and study system. It is common to start 
with phenomenological models, to determine patterns 
and obtain clues regarding the underlying processes and 
mechanisms, and then to move to a mechanistic model 
to analyse those processes, their interactions and the 
resulting outcomes in more detail. In this Review, we 
will focus on mechanistic simulation models. For the 
purposes of this article, we will simply use the term 
‘model’ to mean a model that describes the dynam
ics of the components of a system in an explicit and 
mechanistic way through mathematical equations or 
computational algorithms. Those models are generally 
studied by simulating them on a computer. There are 
different ways that such models can be implemented. 
The most common types used in immunology are 
compartmental models, in which each compartment 
tracks the size of a given biological entity of interest — 
for example, pathogen load or cytokine concentrations. 
The most common way to implement a compartmental 
model is with ordinary differential equations. We will 
therefore focus on those. Box 1 introduces compart
mental models, while Box 2 briefly describes alternative 
modelling approaches.

Uses for models
There are different ways one can categorize the uses of 
mechanistic simulation models. figure 1 shows one 
way of conceptualizing different model uses, namely for 
exploration (also called hypothesis generation), fitting 
(also called statistical inference) and prediction (also 
called forecasting). Often, a single project might involve 
more than one use of a model. We describe these differ
ent model uses below and then explain briefly how they 
are often used iteratively. To make things more tangible, 
we first introduce and describe two very simple models, 
one for viral (and other intracellular) infections, and one 
for extracellular bacterial infections. We then use these 
example models to illustrate different modelling tasks. 
We keep the two models purposefully very simple and 
generic; thus, they should not be considered as represent
ing a detailed model for a specific pathogen (though, as we 
point out, models as simple as these have been successfully 
used to answer scientific questions of interest).

A simple model for viral infections
For the viral infection model, we track the numbers 
of infected and uninfected cells and the levels of free 
virus. Other details, such as any aspects of the immune 
response, are ignored in this simple construction. 

Mechanistic models
Models that explicitly include 
specific mechanisms/processes 
governing the system of 
interest (usually in a very 
simplified way) in order to 
allow direct investigation of 
such mechanisms.

Simulation
execution of a model on a 
computer; this often involves 
tracking changes of the system 
over time.

Box 1 | Compartmental models

Compartmental models are the most widely used and 
simplest type of simulation model. such models track 
the total amount of entities (for example, pathogens 
or cells). each entity that one wants to track is 
assigned a variable and generally is given a 
mathematical equation that describes how the variable changes. Consider a very simple 
model in which we track a population of a single entity, P. we model two processes, 
birth and death (see the figure). a possible equation describing the dynamics of P is

= + − .+ ( )P P dt gP dPt dt t t t

in words, the population Pt+dt at some time step in the future, dt, depends on the number 
Pt at the current time, t, and the net of their growth (at rate g) and death (at rate d) in 
the time interval dt. Once we specify growth and death rates, the size of P at some 
starting time (usually t = 0) and a time step, we can compute, either manually or with a 
computer, the value for P at any future time. For instance, if we started with P = 100 at 
time t = 0, with growth and death rates of g = 4 and d = 2 per day, and took time steps of 
dt = 1 day, we would have 300 at day 1, 900 at day 2 and so forth.

this equation is called a discrete- time model, since we move forward in time in 
discrete time steps dt. a common alternative to the discrete- time model is a continuous- 
time model, formulated as an ordinary differential equation (ODe). we can move from 
the discrete- time model to a continuous- time model by rewriting the equation as

− = − .+P P

dt
gP dPt dt t

t t

if we now let the time step become infinitesimally small, we arrive at an ordinary 
differential equation

= − .dP t
dt

gP t dP t
( )

( ) ( )

it is common not to show the explicit time dependence of the variable, and to replace 
the d/dt term with a dot, leading to

= −̇P gP dP,

which is the notation we use here. each quantity that one wants to track is assigned  
an equation. the left side indicates the instantaneous change of the specified variable, 
and the right side indicates the processes that lead to change. For small time steps,  
the discrete- time and continuous equations lead to the same results. in fact, when 
simulating an ODe on a computer, the underlying algorithm employs a smart and 
efficient version of a discrete- time model.

in general, we want to track more than one entity. each entity whose change we want 
to track over time is assigned a variable (a compartment) and given a differential 
equation. the two example models shown in fig. 2 and fig. 3 are three- and 
two-compartment models.

Population, PgP dP
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figure 2a shows a graphic representation of such a 
model. The model shown in fig. 2a can be translated 
into equations and computer code in several different 
ways. The most commonly used implementation is 
through a set of ordinary differential equations (ODEs). 
The equations for this model are shown in fig. 2b. 
Once the model has been implemented on a computer 
and the values for the model parameters and variable 
starting conditions are specified, we can simulate the 
system. figure 2c shows examples of different dynamics 
that can be obtained using this model. Despite its sim
plicity, this type of model has been successfully applied 
to the study of chronic infections, such as HIV and 
hepatitis C virus (HCV)7,8, and acute infections, such as 
influenza virus9–13. We discuss a few of these studies in 
some detail below.

Model for extracellular bacterial infections
For the bacterial infection model, we track bacteria and 
the immune response. The latter is implemented in an 
abstract manner; you can consider it to represent the total 
immune response or a specific component of importance 
for a given system. The model is a type of predator–prey 
model in which the bacteria are the prey and the immune 
response is the predator. Such models have been widely 
used in ecology14. figure 3a shows a graphic representa
tion of such a model, and fig. 3b shows the set of ODEs 
corresponding to this model. figure 3c shows two model 
simulations using different parameter values. The steep 
oscillations seen in bacterial load and immune response 
for the first scenario are biologically unrealistic, as is the 
fact that the number of bacteria drops below 1 (a feature 
of ODE models that is important to note and potentially 

Systems thinking and 
systems modelling
The concept that for systems 
with many components 
interacting in complex ways, 
studying only a small part of 
the system does not provide a 
full understanding of the overall 
system dynamics, and thus 
that to fully understand the 
system, one needs to study it 
in its entirety, often with the 
help of models.

Systems immunology and 
systems biology
The application of systems 
thinking and modelling to 
immunology and biology.

Compartmental models
A type of model in which one 
only tracks total numbers for 
the entities of interest — for 
example, total number of 
bacteria and immune 
response. This contrasts with 
agent-/individual- based models 
(Box 2).

Partial differential equations
(PDes). A type of differential 
equation that tracks changes 
with respect to at least two 
directions; if used in 
immunology, these directions 
are generally time and space in 
one, two or three dimensions.

Agent- based models
(ABMs). Models in which each 
entity of interest is tracked and 
simulated individually, instead 
of tracking total numbers only.

Box 2 | Beyond ordinary differential equation models

Models based on ordinary differential equations (ODe) are the 
most common types of models used to study the dynamics of 
infections and immune responses. these models are easy to 
implement and fast to simulate, and it is fairly straightforward to 
fit them to time- series and count data. However, these models 
have several inherent limitations.

First, ODe models are deterministic, which means they do not 
account for the inherent randomness present in essentially all 
biological systems. if you have reason to assume that, for a given 
system under study, this randomness plays an important role, you 
need to use a stochastic model. stochasticity becomes especially 
important at low numbers. as such, stochastic models become 
especially important if you want to study emergence or extinction 
dynamics. the disadvantage of stochastic models is that they are 
harder to analyse mathematically and harder to fit to data, 
despite the recent emergence of software that helps make fitting 
such models simpler (for example, the r package POMP)53. since 
stochastic models require multiple simulations to obtain the 
distribution of outcomes (versus a single simulation run for a 
deterministic model), they also take longer to run. related to this issue, ODe models treat variables as continuous and 
allow values that are below 1 (such as a fraction of a pathogen). the right kind of stochastic models treat variables as 
discrete units, where a drop from say one pathogen would result in no pathogens, and thus the end of an infection.

second, ODe models are in a sense spaceless and assume homogeneous mixing of the different entities/variables that 
are tracked. if you want to include some notion of space (for example, to simulate multiple sites in an infected host or 
have a detailed 2D or 3D model of a specific site), you might need to change your model type. a simple extension that still 
used ODes would allow for the inclusion of some notion of space in a limited form, by formulating sets of ODes that 
described different sites and including terms that allowed for the migration of entities (cells, pathogens) between sites. 
this has the advantage that you can still use ODe models, at the cost of having space represented in an approximate 
manner. a more accurate representation of space could be obtained by implementing partial differential equations 
(PDes), which, in addition to tracking changes in the variables over time, would also track changes with respect to one or 
several spatial directions. unfortunately, PDes can be tricky to work with, and the way you can account for spatial 
features is often not well suited for immunological questions. Agent- based models (aBMs) (discussed next) are a good 
and flexible appproach for explicitly modelling spatial features in immunology.

third, ODe models are compartmental models: they only track the total number of entities (pathogen, cells), not 
individuals. if you want to track individual entities explicitly, you need to switch to aBMs (also called individual- based 
models). in such models, some or all entities are tracked individually. their diverse individual behaviour is determined by 
parameters usually sampled from probability distributions, allowing for variations among individuals. at the same time, 
these entities interact in some defined space, thus making aBMs a good choice if you want to track dynamics in a given 
spatial geometry explicitly. the figure shows a viral infection aBM, in which uninfected cells (green) are placed on a 2D grid 
(for example, an area of the epithelium). virus (blue) diffuses on this grid and can infect cells. the infected cells (red) produce 
new virus. The model also includes T cells (white), which can kill infected cells (see ref.54 for more of the model details).

aBMs allow for great potential detail and realism in the model. However, compared to ODe models, aBMs are more 
difficult to write and harder to analyse, and they take longer to run. Furthermore, because these models tend to be more 
detailed and complex, they usually contain many parameters. each parameter needs to be given a value based on the 
system you want to simulate. this means you need to have a lot of quantitative information about a given system before 
you can build an accurate aBM. additionally, fitting aBMs to data is substantially more complex than fitting 
compartmental systems.
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to address; see Box 2). The second scenario, with differ
ent parameter values, is more likely to capture the basic 
dynamics for a real infection process. It is sometimes 
possible that a model does not produce outcomes that 
are consistent with the data for any choice of biologically 
reasonable model parameter values and starting condi
tions. This means that you have not yet captured all the 
important mechanisms and processes governing the sys
tem under study, and thus the model needs further refine
ment. We discuss this further below. Models like this have 
been applied to study of the dynamics of Mycobacterium 
tuberculosis15 and malaria16 infections, the interactions 
between cancers and the immune response17, and the 
impact of drugs on Staphylococcus aureus infections18. 
We discuss a few of these studies in more detail below.

Using models for exploration
If one knows enough about a system to postulate spe
cific processes and mechanisms but does not have a 
good understanding of how the interactions between 
different processes affect the overall outcomes, building 
and analysing a model can be a useful approach. Using 
models in this way provides a good way to gain some 
intuition of how a system functions and to generate new 
hypotheses. It is advisable to keep models simple initially 
and to increase model complexity as your understanding 
of the system increases.

As an example of this approach, we consider the 
extracellular bacterial infection model introduced 
above and explore how a change in the rate at which the 
immune response increases in response to bacterial load 
(parameter r of the model) influences the peak bacterial 
burden (maximum of variable B). To do so, we imple
ment the model on a computer and then simulate it for 
different values of r, with all other parameters and initial 
conditions kept fixed. For each simulation, we obtain a 
time series for bacteria and immune response like the 
one shown in fig. 3c. From this time series, we record 
the peak bacterial load for each value of r. The results 
are shown in fig. 4a.

Such an analysis allows you to explore how differ
ent components of the system interact to influence the 
outcomes. Because this is such a simple model, you 
might have expected a decrease in peak bacterial load as 
immune activation increases, even without performing 
the simulations. However, it might have been difficult 
to predict the shape and magnitude of the relation. Even 
basic intuitions can be harder to form as the systems 
under study, and the models representing them, become 
more complex.

Using models to fit data
Although models should be built on the basis of the best 
biological information available, once a model is built 
and parameter values are determined, it can be analysed 
without the need for data. To assess the quality of the 
model, one needs to compare its results with known bio
logical data. This can initially happen qualitatively, which 
is a common approach during the exploratory stage.

Going beyond qualitative comparisons requires fit
ting models to data, and thus performing rigorous statis
tical inference. All the statistical machinery available for 
phenomenological models can be used to fit mechanistic 
models. The difference between fitting phenomenologi
cal and mechanistic models to data is that the latter allow 
for more direct testing and possibly for the rejection of 
specific postulated mechanisms. This provides a poten
tially deeper understanding of the system than would be 
possible with phenomenological models alone.

To demonstrate fitting, we consider viral load data 
from groups of individuals infected with influenza who 
receive neuraminidase inhibitors early, late or never 
(symbols in fig. 4b, for which data were extracted from 
ref.19). Assume that you want to investigate potential 
mechanisms of drug action and postulate the following 
two hypothetical mechanisms: one, the drug prevents 
virus entry and new infection of cells; two, the drug 
reduces the rate at which infected cells produce new viri
ons. To investigate these two mechanisms, you can build 
two alternative models by incorporating two parame
ters into the model described above for viral replication. 
Those parameters, e1 and e2, correspond to the drug’s 
mechanism of action, represented by hypotheses 1 and 2, 
respectively (see the fig. 4b caption for details).

Instead of fixing the model parameter values — as 
is done during model exploration — (some of) the 
parameters are allowed to vary and are determined by 
the fitting routine. By fitting a model with parameter e1 
present and another with parameter e2 present, you can 
test which mechanism (as implemented in your model) 
describes the data better. Of course, it could be that the 
data are best described with both mechanisms e1 and e2 
acting, as they are not mutually exclusive, or that even 
with both mechanisms present, the model fails to pro
perly describe the data. For simplicity, we do not test 
those model variants here.

figure 4b shows the best fit of the model for either 
mechanism 1 or 2. The two versions of the model are fit to 
each virus load time series, with either e1 or e2 turned on 
at the indicated times (29 hours post infection for early 
treatment, 50 hours post infection for late treatment). 
The figure shows that models with either mechanism 

Exploration

Prediction Fitting

Use well-fitting model
to make predictions

Use initial model
to make predictions

Qualitative 
check of 
predictions

If fits are poor,
explore further
model alternatives

Fit candidate models
to test hypotheses,
estimate parameters

Check predictions and refine
model by fitting to new data

Fig. 1 | uses for mechanistic models. A schematic illustrating a way to categorize and 
conceptualize different uses of mechanistic models.
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present come reasonably close to the data. You can dis
criminate between the model fits with different statis
tical approaches. A frequently used measure is Akaike’s 
information criterion (AIC), which tries to quantify 
the quality of a model fit, with lower values indicating 
a better fitting model among a candidate set of models 
fit to data20. Computing the AICs corrected (AICc) for 
small sample size for the two models gives AICc1 = −56 
and AICc2 = −82. Thus, on the basis of AIC, the model fit
ting suggests that mechanism e2 — that is, drug induced 
reduction of virus production by infected cells — fits the 
data better. It is important to note that when doing model 
comparisons, the (statistically) ‘best’ model is not neces
sarily a ‘good’ model. Determination of the overall quality 
of the model cannot be done purely on statistical grounds, 
but requires a scientific, not a purely statistical, judge
ment call to decide whether a model can be considered a  
reasonable approximation of the underlying system.

In addition to discriminating between different mod
els, and thus mechanisms, fitting provides estimates for 
the model parameters. In contrast to most parameters 
in phenomenological models (for example, regression 
coefficients), the parameters in mechanistic models 
often have direct biological meaning. Here, you find that 
for the more likely mechanism (mechanism 2), the value 
measuring the strength of the drug is e2 = 0.98, suggest
ing that the drug is highly effective and reduces virus 
production by 98%. Of course, an important caveat for 
the interpretation of the estimated parameters is that the 
model needs to provide a reasonable approximation of 
the real system.

Despite rapid improvements in the capability and 
user friendliness of software, fitting mechanistic models 
to data can still be technically challenging. It also requires 
a good match between available data, the model and the 
scientific question. On the plus side, a fitting approach 
allows for direct testing of different hypotheses, formu
lated as different model mechanisms or model vari
ants, and provides estimates for potentially important  
biological quantities.

Using models to make predictions
Through some combination of the model use approaches 
just described, you might be able to understand a system 
well enough that you can build a model that provides 
a fairly accurate approximation of the real system. You 
can then use the model to perform in silico experiments: 
you can make predictions about what might happen to 
the system if some components were altered, such as 
through the introduction of a drug. Using models for 
prediction or forecasting follows essentially the same 
approach as exploratory model use. The difference is 
that predictive modelling requires confidence that the 
model can decently approximate the real system.

Assume that the simple bacteria model accurately 
captures the dynamics of some real system of interest.  
In that case, the result shown in fig. 4a could be interpreted 
as making predictions of how a change in immune acti
vation rate (possibly mediated by some drug) influences  
the peak bacterial burden.

Often, if models are used for predictions, it is useful 
to provide estimates of uncertainty in the predictions. 

Uninfected
cells, U

Uninfected cells U = n – bUV – dUU
Infected cells I  = bUV – dII

Virus V = pI – gbUV – dVV
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Fig. 2 | A simple model for viral infections. a | Diagram for a simple viral infection 
model. The model tracks changes over time for three quantities (the model variables/
compartments); namely uninfected cells, infected cells and free virus. This model allows 
for the following processes to occur: uninfected cells are produced at rate n and die 
naturally at rate dU. Uninfected cells become infected by virus at rate b, which leads to 
the removal of a virion and an uninfected cell and the creation of an infected cell (the 
model term bUV). The extra g in front of this term in the virus equation allows one to 
account for different experimental units (plaque- forming units or similar measures for 
virus, versus number of cells) and to ensure that all units in the equations are consistent. 
Infected cells produce virus at rate p and die at rate dI. Free virus can infect new , 
uninfected cells or is cleared by the immune response and other mechanisms (for 
example, mechanical transport) at rate dV. b | Ordinary differential equation 
implementation for the simple virus infection model. Each equation tracks the change  
of a variable (compartment) over time. The left side denotes change of the specified 
variable with time. The right side describes the processes (also called flows) that lead to 
change. Positive inflows lead to increases in the variable, whereas negative outflows lead 
to decreases. Each term on the right side represents a specific biological mechanism — 
often in an abstract manner. c | Acute and chronic infection dynamics of the simple viral 
infection model. The variables labelled Ua, Ia and Va show the uninfected, infected and 
virus compartments for an acute infection. For an acute infection, one generally assumes 
that over the timescale of the infection, the natural death of cells and, most importantly , 
the creation of new uninfected cells is negligible, leading to n = dU = 0 in the model. This 
model can produce acute infection dynamics, but it does not allow for chronic infections. 
If one allows the ongoing creation (and, to prevent runaway growth, also background 
death) of cells, the model can produce a chronic infection scenario. This is shown by the 
variables labelled Uc, Ic and Vc. For the chronic infection scenario, we set the rate of 
production of new uninfected cells to n = 105 per day and the rate of natural death to 
dU = 0.1 per day (the inverse of which corresponds to the average lifespan of the cells, 
here 10 days; the half- life sometimes alternatively used contains an extra factor of  
log(2)). All other values are the same for the two scenarios. The initial conditions for the 
variables are U0 = 106 uninfected cells, I0 = 0 infected cells and V0 = 1 infectious virion.  
The parameter values are the virus production rate, p = 100 per infected cell per day ;  
the death rate of infected cells, dI = 1 per day (corresponding to a 24-hour average lifespan); 
a virus clearance rate, of dV = 6 per day (virus lifespan of 4 hours); rate of infection of b = 10–6 
per day ; and conversion factor g = 1, which assumes that the model tracks virus in units of 
infectious virions. The model is simulated for 30 days.
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A common approach for obtaining such estimates is 
through an uncertainty and sensitivity analysis21,22. For 
ODE models like the ones described here, such an analy
sis involves varying the model parameters in ranges that 
are considered biologically reasonable. For each set of 
model parameters, you run the model and compute 
the quantities of interest. This provides a set of model 
predictions, one for each set of model parameters. This 
distribution of model results provides some measure of 

uncertainty in the model predictions, due to uncertainty 
in the underlying model parameters.

Compared to real experiments, these in silico 
approaches are much faster and cheaper, and generally 
they have no ethical implications. The major caveat with 
predictions obtained from such models is that they are 
only reliable insofar as the model properly captures the 
important features of the real system. Thus, an iterative 
process is usually employed, of model predictions, com
parisons to data and further exploration and refinement 
of the models. This can lead to increasingly better and 
more predictive models. Weather forecasting is a domain 
where this approach has proven to be very successful.

Model use in practice
Although it is possible to use a model in only one of the 
ways just described, iterative use as illustrated in fig. 1 
is common. Typically, one or several simple models are 
initially built to explore the dynamics of the system of 
interest and are qualitatively compared to what is known 
about the biological system. If no suitable data for fit
ting are available, the model can be used to generate 
hypotheses and make predictions, which then should 
be tested by comparing to data, either qualitatively or 
through statistically rigorous fitting. If suitable data are 
available, the exploration stage is often followed by fit
ting the most promising candidate model(s) to the data 
to obtain statistical support for specific models, as well 
as estimates for the model parameters. These statistically 
supported models can then be used to make predictions 
about as yetunobserved behaviour of the system (for 
example, simulating the removal of a cytokine in the 
model). Predictions should then be tested with further 
data, likely leading to further model refinements.

A few real- world examples
Mechanistic simulation models of the type we just 
described are increasingly used in immunological and 
infectious disease research. The literature is too vast to 
fully review it. We therefore provide a review and brief 
summary of a few prominent examples and pointers 
towards further discussions of such models.

Nowak and colleagues used a simple model similar 
to the viral infection model described above to gain gen
eral insights into HIV infection dynamics23. A finding 
from their analysis was the suggestion that viral sequence 
diversity is positively correlated with virus load. In 
another study, model fitting was used to allow the authors 
to estimate the rates and total amount of HIV virus pro
duction, as well as CD4+ T cell numbers and virus half 
lives24. These findings helped confirm the futility of 
single drug treatment. Another study considered the 
impact of interferon (IFN) for HCV infected patients; 
by fitting a simple model, the researchers determined 
that IFN’s main mode of action is to block virion pro
duction25. That study also provided quantitative estimates 
for the efficacy of IFN treatment as well as virus half life. 
For more examples and further details on such models 
applied to HIV and HCV, see, for example, refs7,8.

The same types of viral infection models have been 
used to study influenza. In ref.26 the authors used a com
bination of models and data to show that the fitness of 
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Fig. 3 | A simple model for extracellular bacterial infections. a | Diagram for the 
simple bacterial infection model. The included compartments, whose numbers are 
tracked over time, are bacteria, B, and the immune response, I. The following processes 
are implemented: Bacteria grow at a maximum rate g, and growth slows down to zero 
as they approach the value Bmax. The bacteria also die at some fixed rate dB and are 
additionally cleared by the immune response at rate k. The immune response is modelled 
in a very abstract way with a single equation. It can be interpreted as a specific biological 
component that is dominant for a given system, or could be considered as the total 
strength of the response. The immune response has a per- capita growth proportional to 
the presence of bacteria at rate r, and a decay rate of dI. b | Ordinary differential 
equations for the simple bacterial infection model. The compartments being tracked are 
the total number of bacteria and the total strength of the immune response and their 
changes over time. The right side describes the processes (also called flows) that lead 
to change. Positive inflows lead to increases in the variable, and negative outflows lead to 
decreases. Each term on the right side represents a specific biological mechanism — 
often in an abstract manner. See the model diagram for a description of the different 
processes. c | Dynamics of the simple bacteria model for two different scenarios. In both 
scenarios, the initial values for bacteria and immune response are B = 100 and I = 1, and 
the model is run for 100 days; we assume that the maximum rate of bacteria growth is 
g = 2 per day (cells divide every 12 hours); the value at which growth will stop is Bmax = 106; 
and the rate at which the immune response kills bacteria is k = 10–9. The remaining 
parameters differ between the two scenarios. For scenario 1 (lines B1 and I1), bacteria die 
at a rate of dB = 1 per day (average lifespan of 1 day), and the immune response decays at a 
rate of dI = 1 per day and grows at a rate of r = 10–4 per day. For scenario 2 (lines B2 and I2), 
those values are dB = 0.1, dI = 0.1 and r = 10–6.

In silico experiments
using models to explore and 
predict outcomes for scenarios 
for which there are currently  
no data — for example, the 
introduction of a drug into the 
system described by the 
model.
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neuraminidase resistant H1N1 2009 pandemic influ
enza strains was similar to that of drug susceptible virus 
strains. Such models helped shed light on the dynamics 
of co infection with influenza virus and Streptococcus 
pneumoniae. Analysis of a co infection model suggested 
that around four to six days after influenza virus infec
tion, secondary bacterial infection can occur at a much 
lower exposure dose27. Another study28 discriminated 
between different mechanisms of pathogen interaction 
by fitting a model to data and found that increased virus 

release was likely in the presence of bacteria. Further 
examples and details of influenza models can be found 
in refs9–13.

Models like the bacteria model discussed above have 
been used to study malaria and tuberculosis infections. 
In one such study29, the authors used a simple discrete 
time model, fitted to data, to elucidate the relative roles 
of target cell limitation versus immune responses during 
malaria infections. A four equation differential equa
tion model30 allowed the prediction of how changes in 
asexual parasite densities influence gametocyte con
version rates. In a study of tuberculosis31, the authors 
used a detailed model to explore and predict the impact 
of depleting key cytokines on the infection dynamics. 
They found, for instance, that depletion of IL10 and 
IL4 during latency led to a large increase in bacterial 
density. Further examples of simulation models applied 
to malaria and tuberculosis can be found in refs32,33.

Models are also often used to study the effects of anti
microbial drugs. This approach is generally referred to 
as pharmacokinetic–pharmacodynamic (PK–PD) mod
elling34. While most PK–PD models include equations 
for the processes describing the pathogen and the drug 
dynamics, only a few also model components of the 
immune response. In an example of a model that includes 
PK–PD and the immune response35, use of a model sug
gested that high dose, extended treatment with antibiotics 
is often the best strategy for reducing resistance emer
gence. For additional examples of models that include 
components of the immune response, see refs36–38.

Another area in which such models have been used 
is in probing the dynamics of T cells. As an example, 
stochastic simulation models were used in ref.39 to deter
mine that random differentiation and division events 
drive CD8+ T cell diversification. Application of another 
model helped characterize divergent subpopulations of 
CD4+ effector and central memory T cells40. refs41,42  
provide further examples.

These types of models have also been successfully 
applied to the study of non infectious systems. A com
partmental simulation model applied to chronic myeloid 
leukaemia showed that the drug imatinib inhibits the 
production of new leukaemic cells but does not deplete 
existing cells43. In ref.44, the authors combined models 
and data to determine the existence of distinct sub
populations of haematopoietic stem cells with different 
turnover rates.

These examples are just a few among many. For fur
ther examples of such models applied to specific systems 
or questions, see, for example, the recent collections of 
articles introduced in refs45,46.

How to apply models
Reading thus far might have persuaded you that the 
kinds of models we describe could be useful for your 
research. Here are some suggestions for the next steps.

Form a team. We described what simulation models can 
and cannot do. If you have a question that lends itself 
to this kind of modelling, arguably the best option is to 
team up with a modelling expert. The number of scien
tists using mechanistic simulation modelling approaches 
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Fig. 4 | Different uses of mechanistic models. a | Bacteria peak numbers as a function  
of immune response activation rate (model parameter r). b | Influenza virus load data  
and model fits in the absence and presence of neuraminidase inhibitor treatment.  
The symbols are data from ref.19. The model is the acute virus infection model introduced 
above (n = dU = 0), with the following changes: to implement mechanism 1, we replace the 
infection terms bUV and gbUV with b(1 − e1)UV and gb(1 − e1)UV, where e1 describes  
the strength of the first mechanism. To implement mechanism 2, we replace pI with  
p(1 − e2)I, with e2 describing the strength of the second mechanism. Solid lines show  
the best fits of the model with mechanism e1, and the dashed lines show fits of the model 
with mechanism e2.
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has been increasing considerably over the past decades. 
These individuals are distinct from biostatisticians and 
bioinformaticians, although there is often considerable 
overlap. Modellers are often ready to apply their skills 
and tools to interesting immunological questions. To 
make this team approach successful, each collaborator 
needs to understand enough about the other person’s  
domain to engage in a meaningful manner. Thus, model
lers need to understand enough biology and immunol
ogy to build reasonable models, and immunologists 
need to understand enough about the models to know 
the models’ strengths and limitations and to assess their 
usefulness for a given situation. We hope this article 
helps with the latter aspect.

Build your own model. Some readers might want to try 
building and analysing models themselves. Before doing 
so, consider whether a mechanistic model is the right 
tool to address your question. At times, a question may 

best be addressed by experiments and collecting more 
data. At other times, a phenomenological model might 
be the right approach. If a simulation model is suitable 
for your question, determine what type of mechanistic 
model you need. Compartmental models implemented 
as ODEs (the models we have focused on in this review) 
are often a good first choice. However, for certain ques
tions and scenarios, those model types are not suitable, 
and you might need a different type of model. See Box 2 
for a brief discussion.

Next, you need to decide how much detail to include. 
We recommend starting simple and increasing com
plexity as needed (Box 3). As you build your model, be 
clear about the assumptions you make, and ensure that 
your assumptions can be justified on the basis of what 
is known about the biology of the system. If several 
potential processes may be reasonably assumed, it might 
be suitable to explore multiple models, each encoding 
one or some of the biologically reasonable mechanisms 

Box 3 | How detailed should my model be?

as the immune response is very complex, you might be inclined to build very complicated and detailed models, to be  
as realistic as possible. although more detailed models can indeed be more realistic, there are several drawbacks.  
First, as models get larger, they contain more parameters. each parameter needs to be given a numeric value to allow 
you to run simulations. You can try to obtain the parameters from the literature, but this information is often not 
available. alternatively, you could fit the model to data and try to estimate the parameters. However, with the kind  
of data typically available, you can usually only estimate a few parameters with some level of certainty. Furthermore, 
larger models are harder to implement, take longer to run and are more difficult to analyse. with too many parts  
present, it can be hard to understand how different components interact with each other and affect the outcomes  
of interest.

a good analogy for determining the right model is the use of maps. Maps are models of the real world. they serve 
specific purposes, and it is important that a given map be useful for the intended purpose. Consider the three maps 
(models) of the fictional country of antibodia (see the figure). if you want to know where this country is located, the  
left map is useful. if instead you want to know how to drive from t- town to Dendriticella, the middle map would be the 
most useful. if you want to know where most people live in this country, the right map is most useful. it is the same 
‘system’ under consideration (the country of antibodia), but depending on the question, different maps (models) are 
needed. analogously, for the same biological system under study (for example, a specific pathogen and host), different 
types of models that include and exclude different details of the systems are needed, depending on the question you 
want to answer. the usefulness of maps (and models) is that they capture the information that is needed for a specific 
situation, while ignoring details that are not important for a given question, thus producing the right level of  
complexity.

to build models that are suitable to study a particular system, model builders need to be knowledgeable about 
the system they want to study or to collaborate with subject matter experts. Building a good model needs to follow the 
Goldilocks principle: if a model is too simple, it likely does not approximate the real system very well. if a model is too 
complicated, it is hard to build and analyse, and might not lead to much insight (that is, the model is a big black box).  
The goal is to get the model just right regarding both size and complexity. Unfortunately, no recipe or formula exists 
specifying how to build such a ‘just right’ model. Successful model building and analysis is often iterative. After a model 
has been built and studied, it might become clear — usually by comparing the model with data — that important 
components or interactions have been ignored or not been included correctly. this leads to model modification and 
refinement. this back and forth between model and data can happen over multiple iterations.

Population 
density
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(see, for instance, the two drug mechanism models 
described above).

A few specific pointers regarding practical steps 
towards implementing the models are given in Box 4. 
Once you have one or several starter models built, you 
can explore their behaviour, use them to generate hypoth
eses and predictions, or fit them to available data for 
hypothesis testing. During this process, you will likely 
further refine and improve your model.

While coding is generally required, there are ways 
to build models that do not require writing computer 
code. Some software, such as Berkeley Madonna, Stella 
or more specialized tools47, allows you to graphically 

build and run models. However, be prepared for the 
likelihood that at some point you will need to engage 
in some level of code writing. Before you embark on 
learning a specific programming language, it is worth 
considering which one to learn and use. Currently, two 
of the most popular general purpose languages for sci
entific computing are R and Python. Both languages are 
free and highly flexible, and both have large user and 
developer communities. Commercial products such as 
MATLAB or Mathematica are also frequently used.

One of the authors has developed a free software 
package called Dynamical Systems Approaches to 
Immune Response Modelling (DSAIRM)48. DSAIRM 
is implemented as an R package. The main goal of 
DSAIRM is to provide a user friendly tool to learn about 
modelling in immunology, without the need to write 
code. It also provides access to the code for all the models 
implemented in DSAIRM, which you can then modify 
for your specific research question. Further details can 
be found on the package website48 and in ref.49.

Next steps. To learn more, several books8,50–52 and review 
articles7,41,46 provide further details on mechanistic simu
lation modelling. Beyond additional reading, a great way 
to learn the material is by actively engaging with it. The 
above mentioned DSAIRM R package is meant for that 
purpose. It is quick and easy to install, and you can use 
it to explore and learn a range of models and concepts 
related to infection and immunology modelling using a 
graphical interface.

Conclusion
The type of mechanistic modelling discussed here is used 
increasingly in biology, and specifically in immuno logy, 
microbiology and related areas. The adoption and progress 
of modelling have been rapid, driven by data of higher 
quantity and quality, better and easier touse computa
tional tools, and a general drive in immunology towards 
becoming an increasingly rigorous, quantitative discipline. 
Together with other quantitative analysis approaches, 
mechanistic simulation models provide a useful set of tools 
that allow one to investigate mechanisms of interaction 
and the resulting dynamics for a specific system.

Published online xx xx xxxx

Box 4 | A guide for model building

If you decided that a compartmental model is suitable for your project, and you would 
like to implement one yourself, here are steps you can take to implement such a model 
and check its suitability:

1. Determine which compartments and variables to include.

2. Draw a diagram with variables as boxes. add all processes as arrows.

3. translate the diagram into a set of differential equations. each arrow in your diagram 
should correspond to a flow term in your equations.

4. Go back and forth between your equations, your diagram and your biological 
description of the system. Make sure everything is consistent.

5. Check that the model behaves reasonably by investigating equations for ‘extreme’ 
situations. For instance, if a given variable is zero, no outflow should occur from this 
compartment. similarly, you probably do not want a model in which any quantity can 
grow without bounds. Next, check that nothing biologically unreasonable can occur. 
For instance, ensure that in the absence of a pathogen (those variables set to 0), the 
immune response does not grow. You can do some of these checks ‘on paper’, by 
setting certain variables to zero and thinking through the model behaviour. 
alternatively, you can implement the model first and then test numerically that 
nothing biologically unreasonable happens. the larger your model is, the more 
important it is to isolate and test specific parts of it and ensure they behave properly.

6. Obtain estimates for the parameter values and initial conditions for your model from 
the experimental literature. Contrary to the expectations of many novice modellers, 
this step is often quite difficult and time- consuming. Direct estimates for the model 
parameters might not be available. You then need to use the best available 
experimental evidence, combined with assumptions based on your understanding of 
the system, to supply values for specific parameters. For parameters whose values 
are not well known, the uncertainty analysis described above can be a helpful 
approach later in the modelling process.

7. implement the model on a computer, and explore. as needed, make further 
modifications.

8. Depending on your needs and data availability, move on to fitting or predictions.
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