DRUG AND VACCINE TREATMENTS

Unit 7 Paul Thomas Paul.Thomas@stjude.org Department of Immunology St. Jude Children's Research Hospital

COMPARISON: ANNUAL "FLU SHOT" QIV

 The annual flu shot is generated by inactivating a whole, attenuated virus, fragmenting it with detergent, and reforming virosomes missing the viral RNA and most viral proteins

There is NO ADJUVANT

Data from Phase I/II trials

	Company (reference)	Vaccine (type)	Dose range (route)	Neut. titre after prime	Neut. titre after boost	T cell response	Trial registration number
200	Sinovac ³⁵	CoronaVac (inactivated SARS- CoV-2 + aluminium hydroxide)	3–6 μg (i.m.) 2x	ND	1:30–1:60 range ^a	ND	NCT04352608
	Sinopharm	Inactivated whole virus COVID-19 vaccine (inactivated SARS-CoV-2 + aluminium hydroxide)	2.5, 5 or 10 μg (i.m.) 3x (0/28/56 or 0/28) 5ug (i.m.) 2x (0/14 or 0/21)	Not reported in detail	1:316 (2.5 ug, 0/28/58) ^c 1:206 (5 ug, 0/28/58) ^c 1:297 (10 ug, 0/28/58) ^c 1:121 (5ug, 0/14) ^c 1:247 (5 ug, 0/21) ^c	ND	ChiCTR2000031809
- — -	CanSino ⁴⁶	Ad5 nCoV (non-replicating AdV5 expressing spike protein)	5 x 10 ¹⁰ , 10 ¹¹ VP (i.m.)	1:18.3–1:19.5 range ^b	—	Yes	NCT04341389
- ``	AstraZeneca ⁴⁷	ChAdOx1nCOV-19 (non- replicating chimpanzee AdV expressing spike protein)	5 x 10 ¹⁰ VP 1 x or 2 [′] (i.m.)	Median 1:218 ^c Median 1:51 ^d Median 1:4–1:16 ^e	Median 1:136 ^d Median 1:29 ^d	Yes	NCT04324606
	Moderna ⁵⁹	mRNA-1273 (mRNA)	2x 25, 100 , 250 μg (i.m.)	Low	1:112.3 (25 µg) ^f 1:343.8 (100 µg) ^f 1:332.2 (250 µg) ^f 1:339.7 (25 µg) ^g 1:654.3 (100 µg) ^g	Good CD4 ⁺ and low CD8 ⁺ response	NCT04283461
	Pfizer ⁶⁰	BNT162b1 (mRNA)	2x 10, 30, 100 µg (i.m.)	Low	1:180 (10 μg) ^h 1:437 (30 μg) ^h	ND	NCT04368728
	Pfizer ⁸⁴	BNT162b1 (mRNA) and BNT162b2 (mRNA)	2x 10, 20, 30 μg	Low	Day 28 ^h BNT126b1 (18–55 years): 1:168 (10 µg) 1:267 (30 µg) BNT126b1 (65–85 years): 1:37 (10 µg) 1:101 (30 µg) BNT126b2 (18–55 years): 1:157 (10 µg) 1:363 (20 µg) 1:361 (30 µg) BNT126b2 (65–85 years): 1:84 (20 µg) 1:147 (30 µg)	ND	NCT04368728
	Novavax ⁹⁰	NVX CoV2373 (Matrix-M) Spike protein 'rosettes'	2 x 2.5–25 μg (i.m. ± Matrix-M) 1x 25 μg (i.m. + Matrix-M)	1:128 (25 μg + Matrix- M) ⁱ	1:3,906 (5 µg + Matrix-M) ⁱ 1:3,305 (25 µg + Matrix-M) ⁱ 1:41 (25 µg unadjuvanted) ⁱ	CD4+	NCT04368988

How DOES A PHASE III STUDY WORK? Vaccine group

Placebo control group

Conducted by independent medical centers (usually geographically distributed)

An independent committee watches the data

Analysis timepoints and success are pre-defined

WHAT DO THE PFIZER RESULTS MEAN?

- 43,538 individuals are in the study
- 170 COVID-19 cases were recorded
 - 162 in the placebo group (9 severe)
 - 8 in the vaccine group (1 severe)
- 95% efficacy against symptomatic disease (one symptom plus PCR+, they start measuring this 7 days post dose 2)
- 94% efficacy in the 65-85 year old group
- No significant safety concerns
- The vaccine received different degrees of approval in Bahrain, the UK, Mexico, Canada, Saudi Arabia, the EU, the US etc.

Moderna data look almost identical

Figure 2. Cumulative Incidence Curves for the First COVID-19 Occurrence After Dose 1, Dose 1 All-Available Efficacy Population

https://www.fda.gov/media/144245/download accessed 8Dec20

RNA vaccines are a relatively new development

RNA vaccine trials in humans

(not including a large number of cancer vaccines and therapeutic approaches based on mRNA)

Target	Started in	Individuals	Company	Status	Phase	Registration
		enrolled ²				number
CMV	2017	181	Moderna	Fully enrolled	Phase 1	NCT03382405
hMPV/PIV3	2019	114	Moderna	Recruiting	Phase 1	NCT04144348
Zika	2019	120	Moderna	Fully enrolled	Phase 1	NCT04064905
Influenza	2017	156	Moderna	Fully enrolled	Phase 1	NCT03345043
Rabies	2018	53	Curevac	Fully enrolled	Phase 1	NCT03713086
Rabies	2013	101	Curevac	Completed	Phase 1	NCT02241135
Rabies	2014	72	Curevac	Completed	Phase 1	NCT02238756
CMV	2020	452	Moderna	Recruiting	Phase 2	NCT04232280
Chikungunya ¹	2019	39	Moderna	Fully enrolled	Phase 1	NCT03829384

¹Passive immunity based on *in vivo* mAb expression

²Includes individuals who received placebo, some trials are still recruiting

WHAT DO THE J&J RESULTS MEAN?

- One dose!
- 43,783 individuals are in the study
- USA, South Africa and Latin America
- US efficacy 72% against moderate to severe COVID-19 (2 symptoms plus PCR+ was counted as moderate)
- 85% efficacy across all studies against severe disease
- 100% protection against hospitalization and death
- No significant safety concerns
- Some indication of reduction of asymptomatic infections
- Now authorized for use in the US, will likely be licensed in EU in March

ARE VECTORED VACCINES A RELATIVELY NEW DEVELOPMENT?

- Ad26-based Ebola vaccine licensed in the EU
- Ad4 and Ad7 vaccines in use in the US military since 1971

Reactogenicity

- Injection site pain
- Headache
- Fatigue
- Elevated temperature
- Myalgia
- Mild flu-like symptoms
- ightarrow unpleasant, but not dangerous

AdV=mRNA>recombinant protein>inactivated vaccine

Strength of adjuvant!

Moderna/VRC mRNA 1273 via LNPs

VACCINES WORK IN OLDER INDIVIDUALS AND BOOST MEMORY IN **INFECTED INDIVIDUALS**

SARS-CoV-2 Spike Antibodies (AUC)

104. 103

102 10¹

> Before First Dose

Safety and Immunogenicity of Two **RNA-Based Covid-19 Vaccine Candidates**

- Vaccines work faster in younger individuals and with lower doses
- With recommended dose, older individuals still generate high levels of protective immunity

Antibody Responses in Seropositive Persons after a Single Dose of SARS-CoV-2 mRNA Vaccine

9-12

Day after First Vaccine Dose

13-16

Seronegative (N=67)

Seropositive (N=43)

17-20

21-27

After

Second Dose

- Post-infection, a single dose of the 0 Pfizer/BioNTech vaccine was equivalent to two doses of the vaccine in naïve individuals
 - Still a significant boost! Ο

HEPATITIS C VIRUS

- Enveloped, positive strand RNA virus, *Flaviviridae*
- Isolated in 1989, treatments first emerged in early 1990s
- ~120 million-200 million infections worldwide, number one indication for liver transplant in the U.S.
- 10¹² viral particles produced/day, ¹/₂ life 3 hours in circulation
- Six major genotypes, 3 dominate in the U.S. (1, 2, 3)
 - 30-50% genetic variation among genotypes
 - 1-5% variation among viruses within a single patient
- Replicates via negative-stranded RNA in membranous web in cytoplasm

HCV STRUCTURE

Dustin LB, Rice CM. 2007. Annu. Rev. Immunol. 25:71–99

HCV LIFE CYCLE

Nature Reviews | Immunology

RECEPTORS FOR VIRAL ENTRY

HCV receptors for cell entry.

Ashfaq et al. Virology Journal 2011 8:161 doi:10.1186/1743-422X-8-161

HCV LIFE CYCLE 2

• HCV-associated disease results from viral persistence leading to long term inflammation and cell turnover

Copyright © 2006 Nature Publishing Group Nature Reviews | Cancer

MOUSE MODEL OF HCV REPLICATION

 Previous models relied human liver transplant into immunodeficient mice—limited usefulness

 Transgenic approach using four known entry factors— Occludin, CD81, SCARB and claudin 1

A genetically humanized mouse model for hepatitis C virus infection Nature 474, 208–211 (09 June 2011)

WHAT ARMS OF THE IMMUNE RESPONSE ARE USEFUL AGAINST HCV?

o Innate immunity

 Antiviral effectors such as IFN that act on host cells, regulating key components of cell biology to limit viral growth and spread

• Antibody-mediated clearance

- In principle, antibodies should be able to remove virus as it spreads from cell to cell
- In practice, the correlation of antibody with HCV clearance and outcome is controversial or lacking
- Patients with high levels of *neutralizing* antibodies nevertheless maintain chronic infection, indicating that neutralizing antibodies are not *sterilizing*

Cell-mediated clearance

- Infected cells can be killed before releasing progeny virions
- Thought to be the primary means of long term control in HCV infection

INDUCTION OF INNATE IMMUNITY IN PATIENTS

- IFN-induced genes interfere with viral replication directly:
 - Reducing protein synthesis by inhibiting initiation factors (PKR, ISG56)
 - Targeting of viral RNA (OAS, RNAseL)
- Innate responses can enhance or initiate adaptive resposnes
 - MHCI expression
 - Chemokine secretion and recruitment of responder cells

INNATE RECOGNITION OF HCV

- The generation of dsRNA structures in HCV replication leads to recognition by multiple innate pathways
- HCV subverts these pathways by sequestering or cleaving key components of innate recognition
- The effects are both qualitative and quantitative on the ensuing innate response

Stacy M. Horner, Michael Gale. Journal of Interferon & Cytokine Research. September 2009, 29(9): 489-498

INNATE ACTIVATION OF ADAPTIVE RESPONSES

 The innate response results in the recruitment and "biasing" of key innate and adaptive cell types, including NK cells, NKT cells, antigen-presenting cells (monocytes/macroph)

ages) and ultimately CD4 T cells that will orchestrate the adaptive response

SUCCESSFUL HCV CONTROL (SUSTAINED VIROLOGICAL RESPONSE) IS MEDIATED BY ROBUST ADAPTIVE IMMUNITY

Broad-based 0 immunological repertoires (targeting multiple epitopes with diverse populations) control acute and prevent the development of chronic infections particularly CD4 and CD8 cells (the role of antibody is controversial)

Dustin LB, Rice CM. 2007. Annu. Rev. Immunol. 25:71–99

CHRONIC HCV INFECTIONS RESULT FROM POOR T CELL CONTROL, EPITOPE ESCAPE AND LIMITED REPERTOIRES

Limited TCR diversity, restricted epitope targets and dysfunctional T cell regulation result in weak T cell responses that are unable to avoid immunological escape

Dustin LB, Rice CM. 2007. Annu. Rev. Immunol. 25:71–99

CHRONIC INFECTIONS AND IMMUNOSUPPRESSION

 Th2 biasing or immune senescence result in the downregulation of aggressive immunological control by CTL, providing the opportunity for viral escape and establishment of chronic infection

SUSTAINING AN EFFECTIVE CELLULAR RESPONSE IS MORE IMPORTANT THAN PEAK RESPONSE NUMBERS

A. Successful immune response

Long-lived memory

B. Unsuccessful immune response

Loss of CD4+ T cells

CONTROL OF ACUTE INFECTION CORRELATES WITH INTERFERON-INDUCED GENES

TREATMENT: TYPE I INTERFERON

- First therapy introduced for HCV
- Full mechanism of action unclear—presumably enhances the "normal" interferon response pathways
- Genotype of virus, low baseline levels of HCV RNA and stage of infection are the strongest correlates of efficacy
- Suggestions that immunomodulation may play a role and that high doseinteferon may overcome some of the "regulatory" negative feedback loops active in the infected host
- Overall, the specific mechanism has not been clearly demonstrated biologically

COMBINATION THERAPY IS SIGNIFICANTLY MORE EFFECTIVE

- Inteferon alone only yields a 20-25% response rate following a 12-18 month course
- Combination therapy with the "broad based" antiviral ribavirin results in 40% of individuals with SVR (30% genotype 1, 65% genotype 2 or 3)

HOW DOES RIBAVIRIN WORK AGAINST HCV?

- Ribavirin was initially designed as a nucleoside analog and developed as an anti-influenza drug, but failed to receive FDA approval or show significant efficacy in humans
- It has been used to treat hemorraghic fevers, RSV and is again under consideration as combination therapy for influenza

• Proposed Mechanisms:

- 1) Immunomodulatory properties
- 2) Inhibition of the inosine monophosphate dehydrogenase (IMPDH)
- 3) Direct inhibition of the HCV-encoded NS5B RNA polymerase
- 4) Induction of lethal mutagenesis
- 5) Modulation of interferon-stimulated gene (ISG) expression

POSSIBLE MECHANISMS FOR RIBAVIRIN MODE OF ACTION

WHAT DATA WOULD HELP RESOLVE RIBAVIRIN'S MECHANISM?

Interferon reduces viral production-given the proposed mechanisms, how should ribavirin work?

- 1) Immunomodulatory properties— Should act independently of interferon
- 2) Inhibition of the inosine monophosphate dehydrogenase (IMPDH)—Should reduce viral production, be guanosine dependent
- 3) Direct inhibition of the HCV-encoded NS5B RNA polymerase—Should reduce viral production, put pressure on polymerase to mutate

5) Modulation of interferon-stimulated gene (ISG) expression—Direct antiviral effects like interferon, should shift ISG expression from negative feedback pathways and be synergistic with poor interferon responders.

DETERMINING AN ANTIVRAL TREATMENT'S MODE OF ACTION

- Biological *in vitro* experiments with HCV have been difficult to perform as a result of the limited nature of developed culture systems
- Alternative drugs that perform a single "ribarvirin function" do not recapitulate ribarvirin efficacy, suggesting that multiple pathways may be acting together
- Biological mechanisms can often seem plausible, but can be difficult to prove conclusively that they play an important role (particularly when the drug is "reverse engineered" to the pathogen)
- Mathematical modeling from real infection data provides a compelling argument for the viral life cycle stage(s) that might be affected

NEW DRUG TREATMENTS FOR HCV

	Viral targets		Host targets
C + E1 + E2 + p7		NSSA NSSB	
NS3	NS5A	NS5B	Cyclophilin A
The NS3/4A serine protease	Multifunctional phosphoprotein, component of the HCV-RNA replication complex	RNA-dependent RNA polymerase	Host protein interacting with NS5A and the NS5B
Boceprevir Telaprevir ABT-450/r, ACH-1625 Asunaprevir, TMC-435 (Simeprevir), BI-201335 Danoprevir/r, GS-9451 MK-5172	Daclatasvir GS-5885 ABT-267 PPI-668 MK	Nucleos(t)ide analogue GS-7977 (Sofosbuvir), Mericitabine, IDX-184 Non-nucleoside analogue BI-207127, ABT-333 ABT-072, BMS-791325 Tegobuvir, Setrobuvir VX-222, Filibuvir	Alisporivir SCY-635

Novel therapies for hepatitis C — one pill fits all? Michael P. Manns & Thomas von Hahn Nature Reviews Drug Discovery 12, 595–610 (2013) doi:10.1038/nrd4050

Rates of Sustained Virologic Response among All Patients and According to HCV Genotype in the Historical Control Group and in Group A.

FELD JJ ET AL. N ENGL J MED 2014;370:1594-1603.

The NEW ENGLAND

JOURNAL of MEDICINE

PREVALENCE OF HIV INFECTION

Copyright © 2006 Nature Publishing Group Nature Reviews | Immunology

GENETIC DIVERSITY OF HIV-1

Nature Reviews | Immunology

- Within HIV-1, a large sequence diversity exists with viral clades being geographically isolated
- Several studies have suggested that the clades have different biological characteristics, including disease pathogenicity and transmissibility

VIRION STRUCTURE

SINGLE STRANDED GENOME, MULTIPLE MESSAGES FROM ALTERNATIVE SPLICING

VIRAL LIFE CYCLE

As a retrovirus, HIV replicates by making a DNA copy of itself that is inserted into the host genome

Thus, an infected cell can become a stable reservoir for the long term production of viral particles

COMPARISON OF HIV AND HCV

- HIV and HCV both produce chronic infections, but are biologically very different viruses
- HIV has a DNA intermediate that become heritably integrated
- HCV is a purely RNA virus

CLINICAL COURSE OF INFECTION

MECHANISMS OF CYTOPATHOGENICITY

- Viral envelope fusogenicity (ER compromised)
- Vpr activates
 caspases
- Nef contributes indirectly to apoptosis via FasL

Nature Reviews | Microbiology

WHAT MAKES HIV LETHAL?

Infections		Malignancies					
Parasites	<i>Toxoplasma</i> spp. <i>Cryptosporidium</i> spp. <i>Leishmania</i> spp. <i>Microsporidium</i> spp.	Kaposi's sarcoma - HHV8 Non-Hodgkin's lymphoma EBV-positive Burkitt's ly Primary lymphoma of the	a, including /mphoma brain				
Intracellular bacteria	Mycobacterium tuberculosis Mycobacterium avium intracellulare Salmonella spp.						
Fungi	Pneumocystis carinii Cryptococcus neoformans Candida spp. Histoplasma capsulatum Coccidioides immitis						
Viruses	Herpes simplex Cytomegalovirus Varicella zoster						

Figure 11-30 Immunobiology, 6/e. (© Garland Science 2005)

WHY IS HIV UNLIKE ANY OTHER CHRONIC INFECTION?

• A combination of "traditional" immune evasion mechanisms (CTL escape, antigen masking) and non-traditional (attacking immune function and cell compartments directly

CAN INFECTION BE EFFECTIVELY CONTROLLED?

MECHANISMS OF RT INHIBITORS

MECHANISM OF PROTEASE INHIBITORS

FUSION INHIBITORS

LATENT RESERVOIRS OF VIRUS

Multiple cell types can serve as latent reservoirs

"Quiescence" of infected cells constrains the possibility total viral elimination

CONTRIBUTION OF INDIVIDUAL RESERVOIRS

Steady-state virus levels result from the relative contributions and turnover of each reservoir compartment

After viral inhibition by HAART, plasma viral RNA decays in four distinct phases allowing a dissection of each reservoir's individual contribution

CAN THE IMMUNE SYSTEM BE USED TO PREVENT OR CLEAR INFECTION?

SUMMARY OF VACCINE TRIALS IN 2006

Vaccine candidate	Antigen (HIV-1 clade)	Manufacturer	Trial start date	Question being addressed	
Prime with canarypox vector expressing HIV-1 genes	env (B, E), gag/pol (B)	Sanofi-Pasteur October 200		Will a gp120 protein vaccine that did not confer protection when used alone be useful in combination with a live, recombinant pox	
Boost with gp120 protein	gp120 (B, E)	Vaxgen		vector prime?	
Replication-defective adenovirus serotype 5 expressing HIV-1 genes	gag, pol, nef (B)	Merck	December 2004	Will an adenovirus-based vector vaccine confer a clinical benefit in individuals who become infected after vaccination?	
Prime with plasmid DNA encoding HIV-1 genes	gag, pol, nef (B), env (A, B, C)	Vical, VRC September 2005		Will a prime-boost strategy using DNA- and adenovirus-based vaccines encoding	
Boost with replication-defective adenovirus serotype 5 expressing HIV-1 genes	gag, pol (B), env (A, B, C)	GenVec, VRC		envelope proteins from three HIV-1 clades, as well as viral structural proteins, confer a benefit?	

Further information on ongoing trials of preventative AIDS vaccines can be found in the 2006 International AIDS Vaccine Initiative report. env, envelope; gag, group-specific antigen; gp120, glycoprotein 120; nef, negative factor; pol, polymerase; VRC, Vaccine Research Center, National Institutes of Health, Maryland, USA.

Letvin Nature Reviews Immunology 6, 930-939 (December 2006) | doi:10.1038/nri1959

MECHANISMS OF IMMUNE PROTECTION

- "Standard" immunological protection mechanisms, including antibody, clearance by phagocytic cells and Fc receptors, and cytotoxic killing of infected cells all function to limit infection and control long-term viral loads
- The loss of effective immune control is what leads to the development of AIDS, therefore the immune response in principle is an effective tool for viral control and clearance

Copyright © 2006 Nature Publishing Group Nature Reviews | Immunology CD8 T CELLS PROVIDE SIGNIFICANT VIRAL CONTROL DURING THE CHRONIC PHASE OF INFECTION

• CD8 depletion in SIV-infected animals leads to rapid increase in viral titers and pathogenesis of disease

VIRAL IMMUNE ESCAPE MECHANISMS

- "Antigenic drift" from the very high rate of mutation of the RT enzyme allows rapid escape from individual antibody and CTL responses
- Epitopes are constrained by structural/functional requirements

HOW DO WE ASSAY FOR T CELL RESPONSES IN HIV **INFECTED INDIVIDUALS?**

Coat nitrocellulose plate with coating IFN-y

Wash plate six times with sterile PBS containing 1% FCS for

Incubate cytokine-secreting cells with respective stimulus (e.g., peptide, PHA, SEB) overnight at 37 °C 5% CO₂.

Wash plate six times with sterile PBS.

Incubate with biotinylated detection IFN-y antibody for 1.5 h at room temperature.

Wash plate six times with sterile PBS.

Incubate with alkaline phosphatase-linked

Wash plate six times with sterile PBS.

Decontaminate plate by adding 0.05%

Wash color reagents off.

IMMUNODOMINANT EPITOPE ESCAPE CAN LEAD TO LOSS OF VIRAL CONTROL

Gag p11C (181–189) sequences										
	¢	т	₽	Y	D	I	N	Q	М	
Week 0	-	-	-	-	-	-	-	-	-	(15/15)
Week 14	-	-	-	-	-	-	-	-	-	(8/8)
Week 20	-	I	-	-	-	-	-	-	-	(10/10)
Week 24	-	I	-	-	-	-	-	-	-	(11/11)
Week 28	-	Ι	-	-	-	-	-	-	-	(11/11)
Week 36	-	I	-	-	-	-	-	-	-	(11/11)
Eeek 44	-	I	-	-	-	-	-	-	-	(10/10)

RECENT REPORTS RELATING MHC HAPLOTYPE TO HIV CONTROL

Nature 465, 350–354 (20 May 2010) Effects of thymic selection of the T-cell repertoire on HLA class Iassociated control of HIV infection Andrej Košmrlj, Elizabeth L. Read, Ying Qi, Todd M. Allen, Marcus Altfeld, Steven G. Deeks, Florencia Pereyra, Mary Carrington, Bruce D. Walker & Arup K. Chakraborty

- Relating the breadth of the TCR repertoire (how many different T cell receptors does the body make?) to the MHC haplotype (the more self peptides available for negative selection, the narrower (and less "cross-reactive" the TCR repertoire)
- Less cross-reactive TCR repertoires are then associated with poor control

VACCINE EXPECTATIONS

 Since viral load "set point" is a key predictor of disease progression and pathogenesis, even a suboptimal vaccine could be of use in highly endemic areas to protect against disease and spread (we'll talk more about this when we get to malaria)

THE MERCK VACCINE

 Use of a viral vector has been shown experimentally to boost cellular responses, by delivering more antigen with the proper innate/PAMF signals

MERCK VACCINE FAILURE

- Not only did the Merck Vaccine fail to protect, there appeared to be an enhancement of infection in vaccinees who had relatively higher pre-existing antibody titers to the viral vector
- This failure led to the cancellation of other vaccine trials based on a similar approach
- HVTN-505 just halted in April 2013—also Ad5 based (41 vacc inf, 30 placebo)

A PROTECTIVE VACCINE? RV144 TRIAL

- ALVAC/AIDSVAX Prime boost-boost vaccine (canarypox followed by protein boost, gp120 based)
- o 16,402 vaccinees
- Vaccine efficacy was 31.2%
- No mitigation of viral load in those that did become infected

IMMUNE CORRELATES OF HIV RISK

POINTS FOR DISCUSSION

- HIV is a unique pathogen in that it targets the immune system directly—playing "offense"—killing or dysregulating the cells that specifically target it and "defense", employing more conventional immune escape mechanisms
- Despite this, the immune response, both antibody and CTLs, provide an important level of control over the virus for an extended period of time, keeping the reservoir relatively stable
- Vaccines could in principle employ similar strategies, but drugs are still the most effective treatment tool