Viral Infection models
2024-07-17
Basic acute virus infection model
\[
\begin{aligned}
\textrm{Uninfected Cells} \qquad \dot{U} & = ? \\
\textrm{Infected Cells} \qquad \dot{I} & = ? \\
\textrm{Virus} \qquad \dot{V} & = ?
\end{aligned}
\]
Basic acute virus infection model
\[
\begin{aligned}
\textrm{Uninfected Cells} \qquad \dot{U} & = - bUV \\
\textrm{Infected Cells} \qquad \dot{I} & = bUV - d_I I \\
\textrm{Virus} \qquad \dot{V} & = pI - d_V V - bg UV
\end{aligned}
\]
Basic chronic virus infection model
\[
\begin{aligned}
\textrm{Uninfected Cells} \qquad \dot{U} & = \color{blue}{n -d_U U} - bUV \\
\textrm{Infected Cells} \qquad \dot{I} & = bUV - d_I I \\
\textrm{Virus} \qquad \dot{V} & = pI - d_V V - bg UV
\end{aligned}
\]
Basic virus infection models
Dynamics of simple viral infection models. A) acute infection. B) chronic infection.
Notation variability
- I’m trying to use the same letters for variables and parameters in these materials.
- If you read the literature, you’ll see all kinds of variants.
\[
\dot{T} = s - uT - \beta T V \\
\dot{T^*} = \beta T V - d T^* \\
\dot{V} = NdT^* - c V - \beta g TV
\] \[
\dot{x} = \lambda - dx - \beta x v \\
\dot{y} = \beta x v - a y \\
\dot{v} = \kappa y - u v - \beta g xv
\]
Diagrams and Models
- It is important to go back and forth between words, diagrams, equations.
- Diagrams specify a model somewhat, but not completely.
Diagrams and Models
The virus model diagram could be implemented as continuous or discrete (or stochastic) model.
\[
\begin{aligned}
\dot{U} & = n -d_U U - bUV \\
\dot{I} & = bUV - d_I I \\
\dot{V} & = pI - d_V V - bg UV
\end{aligned}
\]
\[
\begin{aligned}
U_{t+dt} & = U_{t} + dt(n -d_U U_t - bU_tV_t) \\
I_{t+dt} & = I_{t} + dt( bU_tV_t - d_I I_t )\\
V_{t+dt} & = V_{t} + dt( pI_t - d_V V_t - bg U_t V_t )
\end{aligned}
\]
Model Exploration
Explore the “Basic Virus Model” app in DSAIRM
Virus and Immune Response Models
- The immune response is incredibly complex, we still don’t know how to model it in much detail.
- We can nevertheless build and explore models that are a (hopefully) good balance between realism and abstraction.
Virus and Immune Response Model 1
- U - uninfected cells
- I - infected cells
- V - (free) virus
- F - innate (interferon) response
- T - adaptive (T-cell) response
Virus and Immune Response Model 1
Virus and Immune Response Model 1
\[\begin{aligned}
\dot U & = - b U V \\
\dot I & = b U V - d_I I - k_T T I \\
\dot V & = \frac{p}{1+k_F F}I - d_V V - gb UV \\
\dot F & = r_F I - d_F F \\
\dot T & = r_T T F - d_T T
\end{aligned}\]
Virus and Immune Response Model 2
- U - uninfected cells
- I - infected cells
- V - (free) virus
- F - innate (interferon) response
- T - adaptive (T-cell) response
Virus and Immune Response Model 2
Virus and Immune Response Model 2
\[\begin{aligned}
\dot U & = n - d_U U - b U V \\
\dot I & = bUV - d_I I - k_T T I \\
\dot V & = \frac{p}{1+k_F F}I - d_V V - gb UV \\
\dot F & = r_F I - d_F F \\
\dot T & = r_T T V - d_T T
\end{aligned}\]
Models 1 and 2
\[\begin{aligned}
\dot U & = - b U V \\
\dot I & = b U V - d_I I - k_T T I \\
\dot V & = \frac{p}{1+k_F F}I - d_V V - gb UV \\
\dot F & = r_F I - d_F F \\
\dot T & = r_T T F - d_T T
\end{aligned}\]
\[\begin{aligned}
\dot U & = \color{blue}{n - d_U U} - b U V \\
\dot I & = bUV - d_I I - k_T T I \\
\dot V & = \frac{p}{1+k_F F}I - d_V V - gb UV \\
\dot F & = r_F I - d_F F \\
\dot T & = \color{blue}{r_T T V} - d_T T
\end{aligned}\]
Virus and Immune Response Model 3
- U - uninfected cells
- I - infected cells
- V - (free) virus
- F - innate immune response
- T - CD8 T-cells
- B - B-cells
- A - Antibodies
Model Diagram
Model Equations
\[
\dot U = n - d_U U - bUV\\
\dot I = bUV - d_I I - k_T T I\\
\dot V = \frac{pI}{1+s_F F} - d_V V - b UV - k_A AV \\
\dot F = p_F - d_F F + \frac{V}{V+ h_V}g_F(F_{max}-F) \\
\dot T = F V g_T + r_T T\\
\dot B = \frac{F V}{F V + h_F} g_B B \\
\dot A = r_A B - d_A A - k_A A V
\]
Model Exploration
Explore any/all of the “IR” models in the virus models section