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INFLUENZA A VIRUS

Negative sense,
segmented RNA virus

Orthomyxoviridae

Eight genes, 11 proteins
(three alternate reading
frames)

Two non-structural
proteins (NS1 and PB1-
F2)

Surface proteins HA and

NA determine serotype
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Modified from: Kaiser. Science 2006, 312:380-382.
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DIVERSE HOST TROPISM ALLOWS RESTRICTION AND
RECOMBINATION
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INFLUENZA LIFE CYCLE




HA IS REQUIRED FOR CELL ENTRY

HA binding to sialicacid on  ten7 (b) pH 5
the surface of cells mediates s acia |
initial attachment

Endosaomal
membrane

%ﬂ

Cll surfam_._
mearmbrane

Virus is endocytosed, where
the endosome is acidified

Fusion

This triggers a peptide
conformational change in the 2=
virus, resulting in membrane

fusion 7 7 T

For HA to be active, it needs ,,,:i:.
to be cleaved by a protease membrane
into two pieces—this

protease is generally

restricted to the respiratory

epithelium




NEURAMINIDASE ACTS TO CLEAVE THE SIALIC ACID
RECEPTORS FROM THE CELL SURFACE

AV must balance
the binding and e .
entry activity of HA : 'k L *
with the sialic acid

H OH H
|

cleavage activity of H—o=ci—
NA so that virus B
efficiently enters (== {=0

Mleuraminidase

nm-,:mm-:u 1_:;:'._"
and buds from the
cell surface—thus
HA and NA are
often "matched” for
activity



IMMUNE MECHANISMS OF PROTECTION

Antibody mediated
immunity exerts the most
pressure on the virus,
leading to seasonal
antigenic drift and
pandemic strains of
antigenic shift

Internal proteins are
relatively conserved
allowing heterologous
cellular protection

Mutation of dominant
CD8 epitopes over time
suggests that CTLs
provide immunological
pressure

a Antibody-mediated immunity
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IMMUNE COURSE OF INFLUENZA INFECTION

a

Influenza is initially

controlled by =
antibody and CD8+ &
T cells oy
Secondary o
infection with =
heterologous virus s

is cleared with
CD8+T cell activity
much more rapidly b
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infection can be
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prevented by o
antibody 2
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INFLUENZA EVOLUTION
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HUMAN INFLUENZA PANDEMICS
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EVOLUTION OF HUMAN INFLUENZA FROM 1918

1918 1957 1968 1976 1977 1979 1998 2009

All current human
influenza is majority-
derived from the 1918
pandemic

230 human cases, H1 HA, NP, M,
Fort Dix 1975-1976 and NS donated

North American
classical swine HIN1

M1 NA and M donated

PB2 and PA
donated

Distinct reservoirs have
allowed evolution to
occur with varying
pressures, providing
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SWINE-ORIGIN H1N1 INCIDENCE

New Influenza A (H1N1), Status as of 05 June 2009
Number of laboratory confirmed cases as reported to WHO 06:00 GMT

Cumulative cases
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Total: . e i
21 940 cases Chinese Taipei has reported 16 confirmed case

of influenza A (H1N1) with 0 deaths. Cases from

125 deaths | chinese Taipei are included in the cumulative totals.
The boundaries and names shown and the designati d on this map do not imply th ion of any opinion what Data Source: World Health Organizati \‘f@ World Health
d th gnations used on this map do not imply the expression of any opinien whatsoever ata Source: World Health Organization { Y acd
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there may not yet be full agreement. World Health Organization © WHO 2009. All rights reserved

Map produced: 05 June 2009 08:10 GMT



1918 (AND POSSIBLY SWORH1N1) MORTALITY
CURVES SUGGEST PREVIOUS EXPOSURE

The “U” shaped curve of
reqular influenza infection
demonstrates the highest
mortality among children
(naive) and the elderly
(immunocomprimised)

The 1928 pandemic had a "W”
shaped curve, with a spike in
deaths among young adults—
immunopathology or prior
protection for ~40 year olds?
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PREDICTIONS OF THE 2009/H1N1 PANDEMIC

* The 2009 HiN1 pandemic
emerged as a particularly -
novel threat: an antigenic 6
shift event between two | 1L D=
swine viruses, without the - .
“*human” virus component In-
expected to be required -

* Theinitial rapid spread bred
fears of an equally high
incidence of severe
morbidity and mortality
(~90,000 deaths in the US,
~1.8 million hospitalizations)




The NEW ENGLAND JOURNAL of MEDICINE

“ ORIGINAL ARTICLE ”

P R E ) EXl S |TN G C RO S S ] R EACTIV E Cross-Reactive Antibody Responses
I M M U N |TY TO 2009/H 1N 1 to the 2009 Pandemic H1N1 Influenza Virus

Kathy Hancock, Ph.D., Vic Veguilla, M.P.H., Xiuhua Lu, M.D., Weimin Zhong, Ph.D.,
Eboneé N. Butler, M.P.H., Hong Sun, M.D., Feng Liu, M.D., Ph.D.,
Libo Dong, M.D., Ph.D., Joshua R. DeVos, M.P.H., Paul M. Gargiullo, Ph.D.,
T. Lynnette Brammer, M.P.H., Nancy J. Cox, Ph.D., Terrence M. Tumpey, Ph.D.,
and Jacqueline M. Katz, Ph.D.

Table 1. Cross-Reactive Microneutralization Antibedy Response against Pandemic Influenza A (H1N1) Virus in Pediatric and Adult
Recipients of Seasonal Trivalent Inactivated Influenza Vaccines.*
Type of Vaccine, Increase in Microneutralization Titer
Influenza Season, and Age MNo.of  Antibody Titer by a of =40 for Children
Influenza Virus Used in Assay Group Subjects Factor of =4 Geometric Mean Titer§ or =160 for Adults;
Before After
Vaccination  Vaccination Before After
(95% CI) (95% ClI) WVaccination Vaccination
% %o
Children
Trivalent inactivated influenza vaccine
2005-2007 6moto9yr 33
Seasonal HINI 67 26 267 45 94
(16-40) (171-418)
Pandemic HIN1 ] 5 6 0 0
(5-6) (5-6)
2007-2008 Syrto9yr 13
Seasonal HIN1 25 42 575 54 100
(22-80) (303-1093)
Pandemic H1M1 0 10 12 2 15
(7-15) (8-17)
2008-2009 6 mo te 23 mo 9
Seasonal HIN1 100 5 285 0 100
4-7) (202-402)
Pandemic HIM1§ 0 5 5 0 0
Trivalent inactivated influenza vaccine
with adjuvant
2008-2009 6 mo to 59 mo 459
Seasonal HIN1 96 12 193 24 100
(8-18) (134-280)
Pandemic H1N1 2 6 8 0 4
(-7} (7-9)




TABLE CONTINUED

Adults

2007=-2008
Seasonal HIN1

Pandemic HIM1

2008-2009
Seasonal HIN1

Pandemic H1IN1

Older adults

Trivalent inactivated influenza
vaccing

2007-2008
Seasonal HIN1

Pandemic HIM1

2008-2009
Seasonal HIN1

Pandemic HIMN1

Trivalent inactivated influenza vaccine
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EARLY PANDEMIC H1N1:
APRIL — JULY 2009

Table 2. Estimates of pandemic (H1N1) 2009-related cases and rates of illness and hospitalization by age distribution of confirmed
case-patients, United States, April—July 2009

Estimated no. case-patients Estimated rate/100,000*
Parameter Median 90% range Median 90% range
Total no. case-patients by age group, yt 3,052,768 1,831,115-5,720,928 997 598-1,868
04 397,033 238,149-744,045 1,870 1,122-3,505
25-49 612,862 367,608-1,148,511 577 346-1,081
50-64 180,297 108,146-337,879 319 192-599
>65 42,292 25,368-79,256 107 64-201
No. hospitalized case-patients by age group, y 13,764 9,278-21,305 45 3.0-7.0
04 2 768 1,866—4.285 13.0 8.8-20.2
3,364-7,725
50-64 1,912 1,289-2,959 3.4 2.3-5.2
>65 654 441-1,012 1.7 1.1-2.6
Multiplier
Hospitalized 2.7 1.7-4.5 - -
Nonhospitalized 79 47 —-148 - -
Through May 12 33 23-49 - -
After May 12 84 50-163 - -

*United States Population Estimates, 2009.
tTAge distributions from line list and aggregate reports of laboratory-confirmed cases and hospitalizations to the Centers for Disease Control and
Prevention through July 23, 3009.

Reed C, Angulo FJ, Swerdlow DL, Lipsitch M, Meltzer MI, Jernigan D, et al. Estimates of the prevalence of pandemic (H1N1) 2009,
United States, April-July 2009. Emerg Infect Dis. 15 (12): 2004-7.



2009 PANDEMIC H1N1

Classical swine North American  Human (H3N2) Eurasian avian-

2009/H1N1 resulted from ke swine
the recombination of two ) |
viruses (American and
Eurasian Swine)

The American Swine virus
was itself a recombinant of
three viruses that
established itself in 1998

These viruses are
genetically distant from

A/SW/taly/13901-2/95

2

PB2 - North American
avian

PB1 - Human H3N2
PA - North American

the human seasonal HiN1 aian
(reference strain N7 - Evracio atan

like swine

M - Eurasian avian-like
swine

NS - Classical swine

A/Brisbane/59/07)

A/CA/4/2009
A/TN/1-560/2009



HaiN1 SWINE FLU STUDIES: RESPONSE IN

HUMAN CELLS

Measures:

* Infectivity and growth of virus
(TCIDg,, immunofluorescence)

* Secretion of inflammatory
mediators from apical and
basolateral surfaces (multiplexed
immunoassay)

* Transcriptional response over the
first 24 hours (Exon arrays,
fluidigm analysis)

 Confirm results by “swapped
viruses” made by reverse genetics

EpiAirway ™,
MatTek

|




VIRAL GROWTH KINETICS IN HAE CELLS

Human primary Swine primary
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Influenza NP detection in 3D HAE cultures
viral growth kinetics in HAE cells

CA/04/2009° —— | TN/1-560/2009 NC/2002

influenza NP
DAPI (nucleus)
Z0-1 (tight-junctions)

Italy/1995

8 hr post infection- 0.01 moi



MORE RAPID COLONIZATION OF CULTURE BY
PANDEMIC AND ESW VIRUS
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By 12 hours, pandemic strains and Italy have infected
~50%-75% of the culture



HIGHER NA ACTIVITY IN PANDEMIC AND ESW

NA activity measured
as ability to convert 10000

sialic acid containing e BTy o
<C 1000 3 a® . v
substrate A e L L TR R
. =2 s ®

Results normalizedto > . Yglem

. . . @ TN
functional viral titer, £ |, Ceessriiiiileses,, |eNc
SO NA § . ® o ; e BR
activity/infectious = %
virion
Higher NA activity Timei(ho)

may relate to ability
of virus to spread
efficiently



GROWTH SUMMARY

The pandemic virus acquired a rapid growth phenotype
in human cells similar to the Esw virus

This phenotype associates with both the NA and M of
Esw virus

The Esw virus transmits more efficiently in ferrets

Titer and infected cell number can be de-coupled across
infections/individuals



ODE MODEL OF INFLUENZA INFECTION—ANDREAS
HANDEL, UGA

dU b

- — 1+ 01X uv uninfected cells

1K b
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Why wasn’t the Esw virus a pandemic?



TRANSCRIPTOME ANALYSIS OF PANDEMIC VIRUS
INFECTED HAE CULTURES

MRNA expression in °$°\\o’°
X

hAE cultures &

infected at

MOI=0.01

BIC applied to k-
means clustering:
2 clusters

271 upregulated in
all

24 downregulated
or differential

& \.@

Time (hours p.i.) 12



TOP 9 MOST SIGNIFICANT DIFFERENTIALLY EXPRESSED GENES 12
HOURS POST-INFECTION WITH A/BRISBANE/59/2007(H1N1)

H|FIT2
W |FIT3
W O0AS1
B DDX58
B MX1
HEPSTI1
“MX2
“OASL
®IFIT1

Tennesseel-560 Italy95
Brisbane07
California04




TOP 9 MOST SIGNIFICANT DIFFERENTIALLY EXPRESSED GENES AT 12
HOURS POST-INFECTION WITH A/CALIFORNIA/04/2009(H1N1)

6

Does the TRIG backbone (Asw) induce a “stealthy” respanpsg?

ssee1-560
California04

Brisbane07

aly95

“MTIF2

B AASS

¥ TMEM20
W KCNN4
“ENG
“STK39

“ HGSNAT
“ KRIT1




M-gene/GAPDH
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HOST RESPONSE AS A FUNCTION OF VIRUS
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HOST RESPONSE AS A FUNCTION OF VIRUS ||
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SWAPS

What's the
mechanistic
basis of the
stealthy (or
noisy)
phenotype?
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AND THEN
THERE
WERE NONE :

Previously published as TEN LITTLE INDIANS
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Average amplitude across all genes normalized to M-gene
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THE PANDEMIC STRAIN IS EFFICIENT AND STEALTHY

Rapid + stealthy growth = Pandemic

Morbidity and Mortality Weekly Report

Limited Human-to-Human Transmission of Novel Influenza A (H3N2) Virus
— lowa, November 2011

The set of genes induced by diverse viruses is largely
equivalent in the first 24 hours— “the flu program”

The pandemic strategy is distinct from the well-adapted
human seasonal virus

Kinetic differences in the first ~18 hours of infection are
critical to the quality and quantity of the later response

The stealthy phenotype ismediated by contriubtions of
the P-gene complex, with potential roles for NP and NS



ODE MODEL OF INFLUENZA INFECTION

dU b
o — A [T o X Uov uninfected cells
dFE b
o — " L — 1 +i3XE latent infected cells
@  _E_dl ductively infected cell
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AICCVALUES OF 8 DIFFERENT MODELS

No IR and no cell-regrowth regrowth
No IR, with cell-regrowth With IR reducing virus production, with
With IR reducing virus production, no cell- cell-regrowth
regrowth With IR reducing infection rate, with cell-
With IR reducing infection rate, no cell- regrowth
regrowth With IR prolonging latency, with cell-
regrowth
WiMI‘Rﬁ!ﬁ’élonging laterePno cell- | CA I'T NC
1 H4.5 4.7 33.1 28.2
2 48.8 -22.6 0.8 28.5
3 52.8 24.8 17.0 30.3
ul 59.9 33.2 38.3 33.6
D 53.2 32.1 24.6 31.7




FITS FOR MODEL 6—IR REDUCES VIRUS

PRODUCTION AND CELLS REGROW
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SARS-CoV-2VS. INFLUENZA VIRUS

The Coronavirus Virion

(S) Spike
(M) Membrane

Ribonucleoprotein (RNP) Core
(N) Nucleocapsid + gRNA

(E) Envelope

~100 nm

(+) ssRNA genome ~28-32 Kb
29 proteins

The Influenza Virus Virion
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(-) segmented ssRNA genome ~28-32 Kb
~14 Kb, 10-14 proteins



Coronavirus and influenza virus replication cycles
Coronavirus Influenza virus
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DISTINCT RECEPTOR BINDING reatures OF SARS VS. INFLUENZA VIRUSES
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Coronavirus Genome Encodes Several IFN Antagonists

Structural and Accessory

Non-Structural Replicase
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1. Non-Structural Proteins (nsp1-16)
Conserved across CoVs
Various, required functions
IFN antagonists: nsp1, PLP2

(nsp3)

2. Accessory Proteins
Unique to subfamilies and species
Function dispensable for replication
Encode virulence factors



Coronavirus Genome Structure and Duplication

Structural / Accessory
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LARGE SARS-COV-2 PROTEOME CONTAINS MANY
IMMUNOMODULATORY NON-STRUCTURAL PROTEINS
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PROTECTIVE IMMUNITY AGAINST SARS-CoV-2
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SARS-Co0V-2 VS. INFLUENZA VIRUS SUMMARY

RNA virus (+ sense)
Single segment
Large genome

Multiple immune
antagonists

Specific receptor
(ACE2)

RNA virus (- sense)
8 segments

Much smaller genome
(than CoV)

Single immune
antagonist (ds RNA
sequestration)

Non-specific receptor



RSV VIRION STRUCTURE

RSV VIRION STRUCTURE

Small hydrophobic protein (SH)

Nucleoprotein (N)

Fusion protein (F)

Phosphoprotein (P) Attachment glycoprotein (G)

Large RNA polymerase (L)

Matrix (M)

Epidemiology and prevention of respiratory
syncytial virus infections in children in Italy.
Italian Journal of Pediatrics. 47. 198.
10.1186/s13052-021-01148-8.




New antiviral approaches for respiratory syncytial virus
and other mononegaviruses: Inhibiting the RNA
polymerase

RSV REPLICATION
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fusion inhibitors  replication/transcription inhibitors



UNIQUE FEATURES OF RSV PATHOGENESIS

https://www.frontiersin.org/files/Articles/450448




RSV
VACCINATION
FAILURE

1960 era
vaccine

80% of children
suffered severe
disease after
infection

Two deaths

Published: 14 December 2008
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Lack of antibody affinity maturation due to poor Toll-
like receptor stimulation leads to enhanced
respiratory syncytial virus disease
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