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HEPATITIS C VIRUS

Enveloped, positive strand RNA virus, Flaviviridae

Isolated in 1989, treatments first emerged in early

19905
~120 million-200 million infections worldwide, number
one indication for liver transplant in the U.S.

10*2 viral particles produced/day, ¥2 life 3 hours in

circulation

Six major genotypes, 3 dominate inthe U.S. (3, 2, 3)
30-50% genetic variation among genotypes

1-5% variation among viruses within a single patient

Replicates via negative-stranded RNA in membranous
web in cytoplasm



HCV STRUCTURE
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HCV LIFE CYCLE
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RECEPTORS FOR VIRAL ENTRY
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HCV LIFE CYCLE 2

o HCV-associated disease results from viral persistence
leading to long term inflammation and cell turnover

Chronic liver disease
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WHAT ARMS OF THE IMMUNE RESPONSE ARE
USEFUL AGAINST HCV?

Innate immunity

Antiviral effectors such as IFN that act on host cells, regulating key
components of cell biology to limit viral growth and spread
Antibody-mediated clearance

In principle, antibodies should be able to remove virus as it spreads
from cell to cell

In practice, the correlation of antibody with HCV clearance and
outcome is controversial or lacking

Patients with high levels of neutralizing antibodies nevertheless
maintain chronic infection, indicating that neutralizing antibodies
are not sterilizing

Cell-mediated clearance
Infected cells can be killed before releasing progeny virions

Thought to be the primary means of long term control in HCV
infection



INDUCTION OF INNATE IMMUNITY IN PATIENTS

IFN-induced genes

interfere with viral

replication directly:
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by inhibiting initiation
factors (PKR, ISG56)

Targeting of viral RNA
(OAS, RNAsel)

Innate responses can

enhance or initiate

adaptive resposnes
MHC | expression

Chemokine secretion and
recruitment of responder
cells

IFM-induced
[eEnes

-___-mll

- Immune

g™ TSEE="
E

IRF-1 tari F-xf targut

IRF-3 target

el I| r':l-'l:~| -"'l:-:-a-|
| @@y 1| e Tl |

0.6 0 0.6
Log,,(Ratio)




INNATE RECOGNITION OF HCV

The generation of
dsRNA structures in
HCV replication leads
to recognition by
multiple innate
pathways

HCV subverts these
pathways by
sequestering or
cleaving key
components of
Innate recognition

The effects are both
qualitative and
quantitative on the
ensuing innate
response

A Disruption of PRR signaling
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INNATE ACTIVATION OF ADAPTIVE RESPONSES
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SUCCESSFUL HCV CONTROL (SUSTAINED VIROLOGICAL
RESPONSE) IS MEDIATED BY ROBUST ADAPTIVE IMMUNITY
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CHRONIC HCV INFECTIONS RESULT FROM POOR T CELL
CONTROL, EPITOPE ESCAPE AND LIMITED REPERTOIRES
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CHRONIC INFECTIONS AND IMMUNOSUPPRESSION
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CONTROL OF ACUTE INFECTION CORRELATES WITH
INTERFERON-INDUCED GENES
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B Liver HCV RNA x 107 genomes/100ng RNA,
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First therapy introduced for
HCV

Full mechanism of action
unclear—presumably
enhances the "norma
interferon response pathways

|II

Genotype of virus, low
baseline levels of HCV RNA
and stage of infection are the
strongest correlates of
efficacy

Suggestions that
immunomodulation may play
a role and that high dose-
inteferon may overcome some
of the “regulatory” negative
feedback loops active in the
infected host

Overall, the specific
mechanism has not been
clearly demonstrated
biologically
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COMBINATION THERAPY IS SIGNIFICANTLY MORE

EFFECTIVE

Inteferon alone only
yields a 20-25% response
rate following a 12-18
month course

Combination therapy
with the “broad based”
antiviral ribavirin results
in £0% of individuals with
SVR (30% genotype 1,
65% genotype 2 or 3)
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HoOWw DOES RIBAVIRIN WORK AGAINST HCV?

Ribavirin was initially designed as a nucleoside analog and
developed as an anti-influenza drug, but failed to receive
FDA approval or show significant efficacy in humans

It has been used to treat hemorraghic fevers, RSV and is
again under consideration as combination therapy for
influenza

Proposed Mechanisms:
1) Immunomodulatory properties
2) Inhibition of the inosine monophosphate dehydrogenase (IMPDH)
3) Direct inhibition of the HCV-encoded NS5B RNA polymerase
%) Induction of lethal mutagenesis
5) Modulation of interferon-stimulated gene (ISG) expression



WHAT DATA WOULD HELP RESOLVE RIBAVIRIN'S

MECHANISM?

Interferon reduces viral production--
given the proposed mechanisms, how
should ribavirin work?

1) Immunomodulatory properties—
Should act independently of
interferon

2) Inhibition of the inosine
monophosphate dehydrogenase
(IMPDH)—Should reduce viral

production, be guanosine dependent

3) Direct inhibition of the HCV-encoded
NS5B RNA polymerase—Should
reduce viral production, put pressure
on polymerase to mutate

4) Induction of lethal mutagenesis—Viral
production maintained, infected cell
number maintained (clearance by
decay), new cells infected at a lower
rate

5) Modulation of interferon-stimulated
gene (ISG) expression—Direct
antiviral effects like interferon,
should shift ISG expression from
negative feedback pathways and be
synergistic with poor interferon
responders.
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DETERMINING AN ANTIVRAL TREATMENT'S MODE OF
ACTION

Biological in vitro experiments with HCV have been difficult
to perform as a result of the limited nature of developed
culture systems

Alternative drugs that perform a single “ribarvirin function”
do not recapitulate ribarvirin efficacy, suggesting that
multiple pathways may be acting together

Biological mechanisms can often seem plausible, but can be
difficult to prove conclusively that they play an important
role (particularly when the drug is “reverse engineered” to
the pathogen)

Mathematical modeling from real infection data provides a
compelling argument for the viral life cycle stage(s) that
might be affected



NEW DRUG TREATMENTS FOR HCV
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Rates of Sustained Virologic Response among All Patients and According to
HCV Genotype in the Historical Control Group and in Group A.

@ Historical control with B Group A
telaprevir+peginterferon—ribavirin

96.2 95.3 98.0
_ 80.0
I’ 72.0 I

100+

~
w
1

Patients with Response (%)
N w
w L ]
1 1

All Patients HCV Genotype HCV Genotype
la—Infected 1b—Infected
Patients Patients

FELD JJ ET AL. N ENGL J MED 2014;370:1594-1603.

FEG Interferoni80ug a2a or
1.5ug wZb fw + Ribavirin (800 ,—!" Mo SWR ~ 30%

- mgld) for 24w, _
SVR - 70% |
2013 \ Mo therapeutic option
— |
2014 SOFPR 12 w. [or 12+127)
o \ SOF/RBY 24 w.

2015 I DCW/PR 12 w. 2

- 80% SOF/RBY 24 w. Ho SVR -~ 2006
SOF/DOV or LOV 2dw.

~ 93% IL SOF/LDV 24 w.

QUAD ABT or ASM/DCV I Pol 12 w.




PREVALENCE OF HIV INFECTION

Copyright ® 2006 Nature Publishing Group
MNature Reviews | Immunclogy



GENETIC DIVERSITY OF HIV-1
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Within HIV-1, a large sequence diversity exists with viral
clades being geographically isolated

Several studies have suggested that the clades have
different biological characteristics, including disease
pathogenicity and transmissibility



VIRION STRUCTURE
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SINGLE STRANDED GENOME, MULTIPLE MESSAGES
FROM ALTERNATIVE SPLICING
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VIRAL LIFE CYCLE
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COMPARISON OF HIV
AND HCV

HIV and HCV both
produce chronic
infections, but are
biologically very different
viruses

HIV has a DNA
intermediate that
become heritably
integrated

HCV is a purely RNA virus
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CLINICAL COURSE OF INFECTION

CDa+* T cells (cells/pl)

1200

1000

800

600

400

200

0
0

primary
_infection

Death

Time after infection

Acute HIV infection 4,
Wide distribution of virus
Seeding of lymphoid organs
110"
| I Opportunistic
infactions
= \‘9-. 1108
Clinical latency
|
Onset of J10°
{aymptums
{104
'l |:|E
T e e 4 8 10 12
Weeks Years

HIV RNA (copies/ml plasma)



MECHANISMS OF CYTOPATHOGENICITY
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MECHANISMS OF IMMUNE DYSREGULATION
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WHAT MAKES HIV LETHAL?

Infections Malignancies

Parasites Toxoplasma spp. Kaposi's sarcoma - HHV8 _ _
Cryptosporidium spp. Non-Hodgkin's lymphoma, including
Leishmania spp. EBV-positive Burkitt's lymphoma
Microsporidium spp. Primary lymphoma of the brain

Intracellular || Mycobacterium tuberculosis

bacteria Mycobacterium avium
intracellulare
Salmonella spp.

Fungi Pneumocystis carinii
Cryptococcus neoformans
Candida spp.

Histoplasma capsulatum
Coccidioides immitis

Viruses Herpes simplex
Cytomegalovirus
Varicella zoster

Figure 11-30 Immunobiology, 6/e. (© Garland Science 2005)



WHY IS HIV UNLIKE ANY OTHER CHRONIC
INFECTION?

A combination of
“traditional”
Immune evasion
mechanisms (CTL
escape, antigen
masking) and
non-traditional

Dysfunction of CTL

TCR affinity
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Altered viral
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CAN INFECTION BE EFFECTIVELY CONTROLLED?
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MECHANISMS OF RT INHIBITORS
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MECHANISM OF PROTEASE INHIBITORS

Protease inhibitor
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FUSION INHIBITORS

CD4* T-cell targets

Fusion with
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LATENT RESERVOIRS OF VIRUS
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CONTRIBUTION OF INDIVIDUAL RESERVOIRS

Steady-state virus
levels result from the
relative
contributions and
turnover of each
reservoir
compartment

After viral inhibition
by HAART, plasma
viral RNA decays in
four distinct phases
allowing a dissection
of each reservoir’s
individual
contribution
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CANTHE IMMUNE SYSTEM BE USED TO PREVENT OR
CLEAR INFECTION?

Acute Chronic
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viral load HIV-specific

CD8+ T cell response
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MECHANISMS OF
IMMUNE PROTECTION

"Standard” immunological
protection mechanisms,
including antibody, clearance
by phagocytic cells and Fc
receptors, and cytotoxic
killing of infected cells all
function to limit infection and
control long-term viral loads

The loss of effective immune
control is what leads to the
development of AIDS,
therefore the immune
response in principle is an
effective tool for viral control
and clearance

& Mucosal immunity

h &

9 cow
o Teell

Epithetial cell

- " .
UL T R T L pd U Y G

e ==
Memory  Neuwtralizing
B cell antibody - "'" Infected
: ‘/’""‘ e CO" T cell
(O
@ r:-.
L 3 Virus-specific
E* Teell
v s ; P {L:I 2
Antivieal! [ £ Cytokine
miedlator J
CO4* Teell

Copyright & 2006 Mature Publishing Groug
Mature Reviews | Immunology



CD8 T CELLS PROVIDE SIGNIFICANT VIRAL CONTROL
DURING THE CHRONIC PHASE OF INFECTION

CD8 depletion in SIV-infected animals leads to rapid
increase in viral titers and pathogenesis of disease

CD8 cell-depleted

Normal

Virus

Magnitude of viremia or CTLs
Magnitude of viremia or CTLs

CTL

Time



VACCINE EXPECTATIONS

Since viral load “set point” is a key predictor of disease
progression and pathogenesis, even a suboptimal
vaccine could be of use in highly endemic areas to
protect against disease and spread (we'll talk more

about this when we get to malaria)
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THE MERCK VACCINE

Use of a viral vector
has been shown
experimentally to
boost cellular
responses, by
delivering more
antigen with the
proper innate/PAMI
signals
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MERCK VACCINE FAILURE

Not only did the Merck = Ads < 18 = 16 <Ad5 <200

Vaccine fail to protect, = 25
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A Intention-to-Treat Analysis
1.0
0.9+
0.8+ Placebo

0.2

r_/_/ P_0.08
0.14

0.0 T T T T T T 1
0.0 0.5 1.0 L5 2.0 25 3.0 35

. No. at Risk
rI I I le Placebo 3200 7775 7643 7441 7325
Vaccine 8202 7797 7665 7471 7347
Cumulative No. of Infections

0.7+
0.6
0.5
0.4+
0.34

A PROTECTIVE VACCINE?
RV144 TRIAL

Probability of HIV-1 Infection (%)

Placebo 32 52 67 76

boost-boost vaccine T R -
(canarypox followed by o

protein boost, gp120

based)

16,402 vaccinees P

0.5+
0.4
0.3+
0.2
0.14

Vaccine

P=0.16

Probability of HIV-1 Infection (%)

0.74

0.6- Placebo
No. at Risk
Placebo 6366 6283 6220 6089 6002
Vaccine 6176 6140 6068 5958 5874

Va CC i n e effi Ca Cy Wa S glti?';g!?tive No. of Infections % - . -

Vaccine 5 22 32 36

O C Modified Intention-to-Treat Analysis
31.2%
0.94
0.8+
0.7+
0.6
0.54
0.4+
0.3+

No mitigation of viral
load in those that did
become infected T e

No. at Risk

Placebo 8198 7775 7643 7441 7325
Vaccine 8197 7797 7665 7471 7347
Cumulative No. of Infections

Placebo 30 50 65 74
Vaccine 12 32 45 51

Vaccine

Probability of HIV-1 Infection (%)

2214 N ENGLJ MED 361;23 NEJM



087T

¥1!g9€ aaw MMON3I N

Z10Z ‘ST14dY  D¥O WIIN

IMMUNE CORRELATES OF HIV RISK

® Women with high immune © Women with medium immune

O Women with low immune

# Men with high immune

© Men with medium immune & Men with low immune
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POINTS FOR DISCUSSION

HIV is a unique pathogen in that it targets the immune
system directly—playing “offense”—killing or
dysregulating the cells that specifically target it and
“defense”, employing more conventional immune
escape mechanisms

Despite this, the immune response, both antibody and
CTLs, provide an important level of control over the
virus for an extended period of time, keeping the
reservoir relatively stable

Vaccines could in principle employ similar strategies,
but drugs are still the most effective treatment tool



HUMAN HERPESVIRUSES

Envelope proteins

Maijor capsid—— Y "
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Portal vertex

Figure 1. The structure of herpesviruses

Trivial name Oral Other Primary Main sites
and acronym Formal name Type affection pathology target cells of latency
Herpes simplex Human Alpha Cold sores Genital ulcers, related  Mucoepithelia  Sensory and
virus-1 (HSV-1) herpesvirus 1 (herpes ulcers) skin lesions, keratitis, cranial nerve
encephalitis, meningitis ganglia
Herpes simplex Human Alpha Cold sores Genital ulcers, as Mucoepithelia  Sensory and
virus-2 (HSV-2) herpesvirus 2 (herpes ulcers) HSV-1 but more rare cranial nerve
ganglia
Varicella zoster Human Alpha Possible oral Chicken pox, herpes Mucoepithelia  Sensory and
virus (VZV) herpesvirus 3 manifestation of zoster cranial nerve
chicken pox and ganglia
herpes zoster
Epstein-Barr Human Gamma Hairy leukoplakia, = Mononucleosis, Epithelial and Memory B-cells
virus (EBV) herpesvirus 4 periodontitis, lymphoma B-cells
nasopharyngeal
carcinoma
Cytomegalovirus Human Beta Periodontitis? Mononucleosis Monocytes, Monocytes,
(CMV) herpesvirus 5 lymphocytes lymphocytes
and epithelia
Roseola virus Human Beta Roseola in infants T-cells Various
(HHV-6) herpesvirus leukocytes
6A and 6B
Roseola virus Human Beta Roseola in infants T-cells T-cells, epithelia
(HHV-7) herpesvirus 7
Kaposi's sarcoma- Human Gamma Kaposi's sarcoma Probably B-cells
associated virus  herpesvirus 8 lymphocytes
(HHV-8) and epithelia

Nucleocapsid
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DIVERSE MECHANISMS OF LATENCY

HSV is truly latent, anc B |

goes through cyclesof Hsv (% Ty pa—
- - Py TTTTITIAAA VP16 mRNA

lytic and latent o Uoie

replication

HCMV is often referre! |

to as “smoldering”"— & [ [ . S @ TR e

not a distinct lifecycle o

but a low level of CD34 + HSC Dendritic cell

minimal (nearly .

undetectable) . o R i

. . O o BCR
production e O o saiion
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ONGOING IMMMUNE CONTROL REQUIRED FOR
HHY SUPPRESSION

The “smoldering” nature of CMV infection provides a
persistent source of antigen but doesn’t drive exhaustion

In humans, >10% of T cells can be commonly CMV specific in
>65 year olds

CD62L+ CD127+
CD27+ CD28+
PD-1- KLRG-1-

IL-2+

Non-inflationary T cells

CMV-specific CD8* T cell frequency

-~
-

- - -

-
-------------

CMV viral load (not to scale)
T ' >
ans Years
Time post-infection

TRENDS in immunology




HHY CONTROL IS DRIVEN BY TRADITIONAL TYPE |
IMMUNITY

Requirements for IFNg,

IL-12, and type | e ey
Immunity

Generation of CD4 and
CDS8T cells that monitor
infected cells—CDg4
deficiency reactivates
many HHVs




