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Introduction

Infectious diseases operate on different temporal and spatial scales.
Building models that connect scales can allow one to answer new

questions.
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Ways to model interactions across scales

+ Static: A within-host model is analyzed/simulated. Results are being fed
into a between-host model, which is subsequently being run.

-+ Dynamic: A within-host model is being simulated inside a between-host

model. Requires an ABM for the between-host model, each agent has its
own infection model running.



Simple example model

It is easiest to discuss multi-scale models in the context of an example. Let’s
consider spread of an acute viral infection (e.g. influenza) at the within-host
and the population level.



Within-host model

At the within host level, we can start with the basic virus model.

U=n—dyU—-bUV
I =bUV —d;I
V =pl —dyV — gbUV



Between-host model

+ At the population level, we'll look at the standard SIR model, with
compartments being susceptible, infected and infectious, and recovered.

- To avoid confusion, we give all the parameters on the population level
model Greek letters.

S=v—B8SI —uS
I =BSI —~I —pul
R=+~I —uR



Linking models

* Assume transmission rate is linked to virus load, e.g. 8 = kV/, with k some
parameter.

S=v—kVSI —uS
I =kVSI —~I —pul
R=~I — uR

Now the between-host model is connected to the within-host model through
the variable V.



Computing virus load

* For a chronic infection model, we can compute V at steady state as
function of model parameters.
n(p—drg) dy

Y=—aa b

+ Changes in the within-host parameters now impact the between-host

dynamics.
+ A similar model could be made that computes total virus load for an acute

infection, and assumes this to be proportional to 8 (Handel et al. 2013).



Another way to link models

* We could also assume that the duration of the infectious period, 1/ is

determined by the time V' in the within host model drops below a certain
level.

+ To investigate this:

- Set within-host model parameters. Run model. Determine time at
which V' < 1 from time-series.

- Use that time as 1/+ in the between-host model.

+ This approach could be done static (compartmental), or dynamic (ABM).



Using the linked models to answer a question

+ We could now answer questions such as: Does increased virus infection
(parameter b) lead to more spread on the population level? If we assume
link through B and/or .

+ For a chronic infection, we can see it from the equation:

v nlp—drg) du
drdy b

- For an acute infection, we would need to run simulations.



Closing the loop

- So far, we assumed that the lower scale (within-host) affects the higher
scale (between-host).

+ One could also consider the population level dynamics to impact the
within-host level. E.g. if we had a new (flu) strain spreading on the

population level which can partially avoid pre-existing immunity, it might
impact the within-host dynamics.

- It gets complicated. One either needs to break down the pieces and look at
them individually, or put them all in one large simulation.



Example 1

Does low-temperature environmental persistence versus high-temperature
within-host persistence pose a potential trade-off for avian influenza (Handel
et al. 2013, 2014)?

Connect a within-host model and a population level model. Explore how
different decay rates at different temperatures affect overall virus fitness.
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Example 2

How does drug resistance emergence within an HIV infected individual
impact the population level dynamics (Saenz and Bonhoeffer 2013)?

+Virus infection within-host model with drug sensitive and resistant strain
and drug treatment.

-+ The epi model parameters for infection duration and transmission rate are
linked to virus load.
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Example 3

A fully dynamic multi-scale model for influenza (Lukens et al. 2014).
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Further reading

These review papers can provide a good further introduction to the topic:
(Childs et al. 2019; Garira 2017; Mideo, Alizon, and Day 2008; Murillo, Murillo,
and Perelson 2013; Handel and Rohani 2015)
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