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A simple simulation model

-+ We'll start with a very simple model, a population of entities
(pathogens/immune cells/humans/animals) that grow or die.

- We'll implement the model as a discrete time equation, given by:
Pigt = P, + dt(gP; — dpP})

- P, are the number of pathogens in the population at current time ¢, dt is

some time step and FP;. 4; is the number of pathogens in the future after
that time step has been taken.

* The processes/mechanisms modeled are growth at rate g and death at
rate dp.



A simple simulation model

- If we started with 100 individuals (pathogens) at time t=0, had a growth
rate of 12 and death rate of 2 (per some time unit, e.g. days or weeks or
years), and took time steps of dt = 1, how many individual would we have

after 1,2,3... time units?
- Why do we multiply by the time step, dt?

Pyt = P, + dt(gP; — dpP)



A simple simulation model - variant 1
Original:
P g = P, + dt(gP; — dpF;)
Alternative:
Piigw =P, +dt(g—dpP,)

What's the difference? Is this a good model?



A simple simulation model - variant 2
Original:
P g = P, + dt(gP; — dpF;)
Alternative:
P, gt = P, + dt(gP; — dp)

What's the difference? Is this a good model?



Discrete time models
Py gt = P, + dt(gP; — dpP})

+ The model above is updated in discrete time steps (to be chosen by the
modeler).

+ Good for systems where there is a “natural™ time step. E.g. some animals
always give birth in spring or some bacteria divide at specific times.

+ Used in complex individual based models for computational reasons.

+ For compartmental models where we track the total populations (instead
of individuals), continuous-time models are more common. They are
usually formulated as ordinary differential equations (ODE).

- If the time-step becomes small, a discrete-time model approaches a
continuous-time model.



Continuous time models

Discrete:
Py gt = P, + dt(gP; — dpP})
Re-write:
Pyt — P
—gP, — dpP,

dt gri pli
Continuous:

dP

— =gP —dpP

dt g P

- If we simulate a continuous time model, the computer uses a smart
discrete time-step approximation.



Some notation

The following are 3 equivalent ways of writing the differential equation:

dP(t
% ZQP(t) _dPP(t)
dP
—— =gP — dpP
dt. g P
P =gP —dpP

We will use the ‘dot notation'.



Some terminology

P =gP — dpP

+ The left side is the instantaneous change in time of the indicated variable,

- Each term on the right side represents a (often simplified/abstracted)
biological process/mechanism.

+Any positive term on the right side is an inflow and leads to an increase of
the indicated variable.

+Any negative term on the right side is an outflow and leads to a decrease
of the indicated variable.



Extending the model

P =gP — dpP

For different values of the parameters g and dp, what broad types of
dynamics/outcomes can we get from this model?



Extending the model

P =gP — dpP

How can we extend the model to get growth that levels off as we reach some
high level of P?



Model with saturating growth

: P
P =gP(1-

) — dpP

max

- We changed the birth process from exponential/unlimited growth to
saturating growth. P, is the level of P at which the growth term is zero.

- If P > P,,,., the growth term is negative.
+ The population settles down at a level where the growth balances the

decay, i.e. when gP(1 — wa) = dpP.




Adding a second variable

- A single variable model is ‘boring'.

- The interesting stuff happens if we have multiple compartments/variables
that interact.

- Let's introduce a second variable.

- Let's assume that P is a population of some bacteria (but could also be
some animal), which gets attacked and consumed by some predator,
e.g. the immune system or another animal. We'll pick the letter H for the
predator (any label is fine).



Adding a second variable

: P
P =gP(1 -

) —dpP & ?

max

H =7

+ The predator attacks/eats the prey. What process could we add to the P-
equation to describe this?



Adding a second variable

: P
P =gP(1-

) — dpP — kPH

max

H ="
+ The more P there is, the more the predator will grow, e.g. by eating P or by
receiving growth signals.
+ What term could we write down for the growth dynamics of H?

+ Finally, H individuals have some life-span after which they die. How can we
model this?



Predator-prey model

The model we just built is a version of the well-studied predator-prey model
from ecology.

P:gpP(l— )—dpP—kPH

max

H =gy PH —dgH
The discrete-time version of the model is;

P

Pii gt = P, + dt(gpP(1 — ) —dpP, — kP,H,)

max

Hy g = Hy + dt(gg P, Hy — dg Hy)



Bacteria and immune response model

The names of the variables and parameters are arbitrary. If we think of
bacteria and the immune response, we might name them B and / instead.

: B
B = gB(1 — ) —dgB — kBI
I =rBI —d;I

B
Byia = By + dt(gBy(1 - — ' ) —dgB; — kB,I)

max

It—l—dt — It + dt('r’BtIt — d[It)



Graphical model representation

+ It is important to go back and forth between words, diagrams, equations.

- Diagrams specify a model somewhat, but not completely. The diagram
below could be implemented as ODEs or discrete time or stochastic
models.
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Model exploration

We could analyze the model
behavior with ‘pencil and paper’ (or
some software,

e.g. Mathematica/Maxima). This
only works for simple models.

We could analyze the model
behavior by simulating it.

To simulate, we need to implement
the model on a computer, specify
starting (initial) conditions for all
variables and values for all model
parameters.
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A simple virus infection model



A simple virus infection model
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A simple virus infection model



Notation comment

+If you read the literature, you'll see all kinds of letters used for variables
and parameters. That can be confusing but unfortunately unavoidable.

+ Look carefully at models and see how variables/parameters are defined. A
model that looks new might in fact be one that you know, just using
different notation.

+ These 2 models are the same as the model we just saw!

T =s— kT — BTV
T* =BTV — dT*

V=nT*—cV —B9gTV

T = A—dx — Bzv
y = Pzv —ay
U = Ky — uv — Bgxv



A larger virus infection model



Virus and Immune Response Model

+ The immune response is incredibly complex, we still don't know how to
model it in much detail.

-+ We can nevertheless build and explore models that are a (hopefully) good
balance between realism and abstraction.

- Let's look at a virus model that contains uninfected cells (U), infected cells
(1), virus (V), an innate immune response (F), CD8 T-cells (T), B-cells (B) and
Antibodies (A).



Model Diagram
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Model Equations

U=n—dyU —bUV
I =bUV —d;I — kyT1I

: pl
V = —dyV —bUV — k AV
1+ spF v 4

: vV
pr — dF V+thF( )
T = FVgT —|—7“TT
FV
FV + hp

A=r,B—djsA—kj AV



Learn more
DSAIRM package:

+ Basic Bacteria Model app.
+ Basic Virus Model app.
+ Virus and Immune Response app.



